summaryrefslogtreecommitdiff
path: root/Trivac/src/TRICO.f
diff options
context:
space:
mode:
Diffstat (limited to 'Trivac/src/TRICO.f')
-rwxr-xr-xTrivac/src/TRICO.f159
1 files changed, 159 insertions, 0 deletions
diff --git a/Trivac/src/TRICO.f b/Trivac/src/TRICO.f
new file mode 100755
index 0000000..d5b0254
--- /dev/null
+++ b/Trivac/src/TRICO.f
@@ -0,0 +1,159 @@
+*DECK TRICO
+ SUBROUTINE TRICO (IELEM,IR,NEL,K,VOL0,MAT,DIF,XX,YY,ZZ,DD,KN,QFR,
+ 1 CYLIND,A)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Compute the mesh centered finite difference coefficients in element K.
+*
+*Copyright:
+* Copyright (C) 2002 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* IELEM degree of the polynomial basis: =1 (linear/finite
+* differences); =2 (parabolic); =3 (cubic); =4 (quartic).
+* IR first dimension of matrix DIF.
+* NEL total number of finite elements.
+* K index of finite element under consideration.
+* VOL0 volume of finite element under consideration.
+* MAT mixture index assigned to each element.
+* DIF directional diffusion coefficients.
+* XX X-directed mesh spacings.
+* YY Y-directed mesh spacings.
+* ZZ Z-directed mesh spacings.
+* DD used with cylindrical geometry.
+* KN element-ordered unknown list:
+* .GT.0: neighbour index;
+* =-1: void/albedo boundary condition;
+* =-2: reflection boundary condition;
+* =-3: ZERO flux boundary condition;
+* =-4: SYME boundary condition (axial symmetry).
+* QFR element-ordered boundary conditions.
+* CYLIND cylindrical geometry flag (set with CYLIND=.true.).
+*
+*Parameters: output
+* A mesh centered finite difference coefficients.
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER IELEM,IR,NEL,K,MAT(NEL),KN(6)
+ REAL VOL0,DIF(IR,3),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),QFR(6)
+ LOGICAL CYLIND
+ DOUBLE PRECISION A(6)
+*----
+* LOCAL VARIABLES
+*----
+ DOUBLE PRECISION DHARM,DIN,DOT
+ DHARM(X1,X2,DIF1,DIF2)=2.0D0*DIF1*DIF2/(X1*DIF2+X2*DIF1)
+*
+ DENOM=REAL((IELEM+1)*IELEM)
+ L=MAT(K)
+ DX=XX(K)
+ DY=YY(K)
+ DZ=ZZ(K)
+ IF(CYLIND) THEN
+ DIN=1.0D0-0.5D0*DX/DD(K)
+ DOT=1.0D0+0.5D0*DX/DD(K)
+ ELSE
+ DIN=1.0D0
+ DOT=1.0D0
+ ENDIF
+ KK1=KN(1)
+ KK2=KN(2)
+ KK3=KN(3)
+ KK4=KN(4)
+ KK5=KN(5)
+ KK6=KN(6)
+* X- SIDE:
+ IF(KK1.GT.0) THEN
+ A(1)=DHARM(DX,XX(KK1),DIF(L,1),DIF(MAT(KK1),1))*DIN*VOL0/DX
+ ELSE IF(KK1.EQ.-1) THEN
+ A(1)=DHARM(DX,DX,DIF(L,1),DX*QFR(1)/DENOM)*DIN*VOL0/DX
+ ELSE IF(KK1.EQ.-2) THEN
+ A(1)=0.0D0
+ ELSE IF(KK1.EQ.-3) THEN
+ A(1)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DIN*VOL0/DX
+ ENDIF
+* X+ SIDE:
+ IF(KK2.GT.0) THEN
+ A(2)=DHARM(DX,XX(KK2),DIF(L,1),DIF(MAT(KK2),1))*DOT*VOL0/DX
+ ELSE IF(KK2.EQ.-1) THEN
+ A(2)=DHARM(DX,DX,DIF(L,1),DX*QFR(2)/DENOM)*DOT*VOL0/DX
+ ELSE IF(KK2.EQ.-2) THEN
+ A(2)=0.0D0
+ ELSE IF(KK2.EQ.-3) THEN
+ A(2)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DOT*VOL0/DX
+ ELSE IF(KK2.EQ.-4) THEN
+ IF(KK1.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (1).')
+ A(2)=A(1)
+ ENDIF
+ IF(KK1.EQ.-4) THEN
+ IF(KK2.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (2).')
+ A(1)=A(2)
+ ENDIF
+* Y- SIDE:
+ IF(KK3.GT.0) THEN
+ A(3)=DHARM(DY,YY(KK3),DIF(L,2),DIF(MAT(KK3),2))*VOL0/DY
+ ELSE IF(KK3.EQ.-1) THEN
+ A(3)=DHARM(DY,DY,DIF(L,2),DY*QFR(3)/DENOM)*VOL0/DY
+ ELSE IF(KK3.EQ.-2) THEN
+ A(3)=0.0D0
+ ELSE IF(KK3.EQ.-3) THEN
+ A(3)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY
+ ENDIF
+* Y+ SIDE:
+ IF(KK4.GT.0) THEN
+ A(4)=DHARM(DY,YY(KK4),DIF(L,2),DIF(MAT(KK4),2))*VOL0/DY
+ ELSE IF(KK4.EQ.-1) THEN
+ A(4)=DHARM(DY,DY,DIF(L,2),DY*QFR(4)/DENOM)*VOL0/DY
+ ELSE IF(KK4.EQ.-2) THEN
+ A(4)=0.0D0
+ ELSE IF(KK4.EQ.-3) THEN
+ A(4)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY
+ ELSE IF(KK4.EQ.-4) THEN
+ IF(KK3.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (3).')
+ A(4)=A(3)
+ ENDIF
+ IF(KK3.EQ.-4) THEN
+ IF(KK4.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (4).')
+ A(3)=A(4)
+ ENDIF
+* Z- SIDE:
+ IF(KK5.GT.0) THEN
+ A(5)=DHARM(DZ,ZZ(KK5),DIF(L,3),DIF(MAT(KK5),3))*VOL0/DZ
+ ELSE IF(KK5.EQ.-1) THEN
+ A(5)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(5)/DENOM)*VOL0/DZ
+ ELSE IF(KK5.EQ.-2) THEN
+ A(5)=0.0D0
+ ELSE IF(KK5.EQ.-3) THEN
+ A(5)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ
+ ENDIF
+* Z+ SIDE:
+ IF(KK6.GT.0) THEN
+ A(6)=DHARM(DZ,ZZ(KK6),DIF(L,3),DIF(MAT(KK6),3))*VOL0/DZ
+ ELSE IF(KK6.EQ.-1) THEN
+ A(6)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(6)/DENOM)*VOL0/DZ
+ ELSE IF(KK6.EQ.-2) THEN
+ A(6)=0.0D0
+ ELSE IF(KK6.EQ.-3) THEN
+ A(6)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ
+ ELSE IF(KK6.EQ.-4) THEN
+ IF(KK5.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (5).')
+ A(6)=A(5)
+ ENDIF
+ IF(KK5.EQ.-4) THEN
+ IF(KK6.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (6).')
+ A(5)=A(6)
+ ENDIF
+ RETURN
+ END