summaryrefslogtreecommitdiff
path: root/Trivac/src/PNDH2E.f
diff options
context:
space:
mode:
Diffstat (limited to 'Trivac/src/PNDH2E.f')
-rwxr-xr-xTrivac/src/PNDH2E.f300
1 files changed, 300 insertions, 0 deletions
diff --git a/Trivac/src/PNDH2E.f b/Trivac/src/PNDH2E.f
new file mode 100755
index 0000000..9614391
--- /dev/null
+++ b/Trivac/src/PNDH2E.f
@@ -0,0 +1,300 @@
+*DECK PNDH2E
+ SUBROUTINE PNDH2E(ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,SIDE,MAT,
+ 1 IPERT,SIGT,KN,QFR,NLF,NVD,NAN,MU,LC,R,V,H,SYS)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Assembly of a within-group (leakage and removal) or out-of-group
+* system matrix in a Thomas-Raviart-Schneider (dual) finite element
+* simplified PN method approximation (2D hexagonal geometry).
+*
+*Copyright:
+* Copyright (C) 2009 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* ITY type of assembly:
+* =0: leakage-removal matrix assembly; =1: cross section matrix
+* assembly.
+* IELEM degree of the Lagrangian finite elements: =1 (linear);
+* =2 (parabolic); =3 (cubic); =4 (quartic).
+* ICOL type of quadrature: =1 (analytical integration);
+* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
+* NBLOS number of lozenges per direction, taking into account
+* mesh-splitting.
+* L4 number of unknowns per energy group and per set of two
+* Legendre orders.
+* NBMIX number of mixtures.
+* IIMAX allocated dimension of array SYS.
+* SIDE side of the hexagons.
+* MAT mixture index assigned to each element.
+* SIGT total minus self-scattering macroscopic cross sections.
+* SIGT(:,NAN) generally contains the total cross section only.
+* KN element-ordered unknown list.
+* QFR element-ordered boundary conditions.
+* NLF number of Legendre orders for the flux (even number).
+* NVD type of void boundary condition if NLF>0 and ICOL=3.
+* NAN number of Legendre orders for the cross sections.
+* MU indices used with compressed diagonal storage mode matrix SYS.
+* LC order of the unit matrices.
+* R Cartesian mass matrix.
+* V nodal coupling matrix.
+* H Piolat (hexagonal) coupling matrix.
+*
+*Parameters: output
+* SYS system matrix.
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER ITY,IELEM,ICOL,NBLOS,L4,NBMIX,IIMAX,MAT(3,NBLOS),
+ 1 IPERT(NBLOS),KN(NBLOS,4+6*IELEM*(IELEM+1)),NLF,NVD,NAN,MU(L4),LC
+ REAL SIDE,SIGT(NBMIX,NAN),QFR(NBLOS,6),R(LC,LC),V(LC,LC-1),
+ 1 H(LC,LC-1),SYS(IIMAX)
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER(MAXIEL=3)
+ DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1)),VAR1
+*
+ TTTT=REAL(0.5D0*SQRT(3.D00)*SIDE*SIDE)
+ IF(IELEM.GT.MAXIEL) CALL XABORT('PNDH2E: MAXIEL OVERFLOW.')
+ NZMAR=65
+ IF(ICOL.EQ.3) THEN
+ IF(NVD.EQ.0) THEN
+ NZMAR=NLF+1
+ ELSE IF(NVD.EQ.1) THEN
+ NZMAR=NLF
+ ELSE IF(NVD.EQ.2) THEN
+ NZMAR=65
+ ENDIF
+ ENDIF
+ MUMAX=MU(L4)
+ NELEM=IELEM*(IELEM+1)
+ COEF=REAL(2.0D0*SIDE*SIDE/SQRT(3.D00))
+*----
+* COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
+*----
+ CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0
+ CNORM=REAL(SIDE*SIDE/SQRT(3.D00))
+ I=0
+ DO 22 JS=1,IELEM
+ DO 21 JT=1,IELEM+1
+ J=0
+ I=I+1
+ SSS=1.0
+ DO 20 IT=1,IELEM
+ DO 10 IS=1,IELEM+1
+ J=J+1
+ CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
+ 10 CONTINUE
+ SSS=-SSS
+ 20 CONTINUE
+ 21 CONTINUE
+ 22 CONTINUE
+*----
+* ASSEMBLY OF THE MAIN COEFFICIENT MATRIX AT ORDER IL.
+*----
+ DO 100 IL=0,NLF-1
+ ZMARS=0.0
+ IF(MOD(IL,2).EQ.1) ZMARS=PNMAR2(NZMAR,IL,IL)
+ FACT=REAL(2*IL+1)
+ NUM=0
+ KEY=0
+ DO 90 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 90
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 90
+ NUM=NUM+1
+ GARS=SIGT(IBM,MIN(IL+1,NAN))
+ IF(MOD(IL,2).EQ.0) THEN
+* EVEN PARITY EQUATION.
+ DO 35 K2=0,IELEM-1
+ DO 30 K1=0,IELEM-1
+ JND1=KN(NUM,1)+K2*IELEM+K1
+ JND2=KN(NUM,2)+K2*IELEM+K1
+ JND3=KN(NUM,3)+K2*IELEM+K1
+ KEY=(IL/2)*MUMAX+MU(JND1)
+ SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
+ KEY=(IL/2)*MUMAX+MU(JND2)
+ SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
+ KEY=(IL/2)*MUMAX+MU(JND3)
+ SYS(KEY)=SYS(KEY)+FACT*TTTT*GARS
+ 30 CONTINUE
+ 35 CONTINUE
+ ELSE
+* ODD PARITY EQUATION.
+ DO 52 K4=0,1
+ DO 51 K3=0,IELEM-1
+ DO 50 K2=1,IELEM+1
+ KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
+ KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
+ KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
+ INW1=ABS(KNW1)
+ INX1=ABS(KNX1)
+ INY1=ABS(KNY1)
+ DO 40 K1=1,IELEM+1
+ KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1)
+ KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1)
+ KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1)
+ INW2=ABS(KNW2)
+ INX2=ABS(KNX2)
+ INY2=ABS(KNY2)
+ IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN
+ KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INW2
+ SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
+ SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
+ ENDIF
+ IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN
+ KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INX2
+ SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
+ SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
+ ENDIF
+ IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN
+ KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INY2
+ SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
+ SYS(KEY)=SYS(KEY)-SG*FACT*COEF*GARS*R(K2,K1)
+ ENDIF
+ 40 CONTINUE
+ IF(ITY.EQ.0) THEN
+ IF(KNW1.NE.0) THEN
+ KEY=(IL/2)*MUMAX+MU(INW1)
+ IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,1)*ZMARS
+ ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,2)*ZMARS
+ ENDIF
+ ENDIF
+ IF(KNX1.NE.0) THEN
+ KEY=(IL/2)*MUMAX+MU(INX1)
+ IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,3)*ZMARS
+ ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,4)*ZMARS
+ ENDIF
+ ENDIF
+ IF(KNY1.NE.0) THEN
+ KEY=(IL/2)*MUMAX+MU(INY1)
+ IF((K2.EQ.1).AND.(K4.EQ.0)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,5)*ZMARS
+ ELSE IF((K2.EQ.IELEM+1).AND.(K4.EQ.1)) THEN
+ SYS(KEY)=SYS(KEY)-0.5*FACT*QFR(NUM,6)*ZMARS
+ ENDIF
+ ENDIF
+ ENDIF
+ 50 CONTINUE
+ 51 CONTINUE
+ 52 CONTINUE
+*
+ ITRS=0
+ DO I=1,NBLOS
+ IF(KN(I,1).EQ.KN(NUM,4)) THEN
+ ITRS=I
+ GO TO 60
+ ENDIF
+ ENDDO
+ CALL XABORT('PNDH2E: ITRS FAILURE.')
+ 60 DO 75 I=1,NELEM
+ KNW1=KN(ITRS,4+I)
+ KNX1=KN(NUM,4+2*NELEM+I)
+ KNY1=KN(NUM,4+4*NELEM+I)
+ INW1=ABS(KNW1)
+ INX1=ABS(KNX1)
+ INY1=ABS(KNY1)
+ DO 70 J=1,NELEM
+ KNW2=KN(NUM,4+NELEM+J)
+ KNX2=KN(NUM,4+3*NELEM+J)
+ KNY2=KN(NUM,4+5*NELEM+J)
+ INW2=ABS(KNW2)
+ INX2=ABS(KNX2)
+ INY2=ABS(KNY2)
+ VAR1=FACT*GARS*CTRAN(I,J)
+ IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.LT.INY2)) THEN
+ KEY=(IL/2)*MUMAX+MU(INY2)-INY2+INW1
+ SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y w
+ ELSE IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GT.INY2)) THEN
+ KEY=(IL/2)*MUMAX+MU(INW1)-INW1+INY2
+ SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w y
+ ENDIF
+ IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.LT.INX1)) THEN
+ KEY=(IL/2)*MUMAX+MU(INX1)-INX1+INW2
+ SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x w
+ ELSE IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.GT.INX1)) THEN
+ KEY=(IL/2)*MUMAX+MU(INW2)-INW2+INX1
+ SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! w x
+ ENDIF
+ IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.LT.INY1)) THEN
+ KEY=(IL/2)*MUMAX+MU(INY1)-INY1+INX2
+ SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! y x
+ ELSE IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.GT.INY1)) THEN
+ KEY=(IL/2)*MUMAX+MU(INX2)-INX2+INY1
+ SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
+ SYS(KEY)=SYS(KEY)-SG*REAL(VAR1) ! x y
+ ENDIF
+ 70 CONTINUE
+ 75 CONTINUE
+*
+ IF(ITY.EQ.0) THEN
+ DO 83 K4=0,1
+ DO 82 K3=0,IELEM-1
+ DO 81 K2=1,IELEM+1
+ KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
+ KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
+ KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
+ INW1=ABS(KNW1)
+ INX1=ABS(KNX1)
+ INY1=ABS(KNY1)
+ DO 80 K1=0,IELEM-1
+ IF(V(K2,K1+1).EQ.0.0) GO TO 80
+ IF(K4.EQ.0) THEN
+ SSS=(-1.0)**K1
+ JND1=KN(NUM,1)+K3*IELEM+K1
+ JND2=KN(NUM,2)+K3*IELEM+K1
+ JND3=KN(NUM,3)+K3*IELEM+K1
+ ELSE
+ SSS=1.0
+ JND1=KN(NUM,2)+K1*IELEM+K3
+ JND2=KN(NUM,3)+K1*IELEM+K3
+ JND3=KN(NUM,4)+K1*IELEM+K3
+ ENDIF
+ IF(KNW1.NE.0) THEN
+ IF(JND1.GT.INW1) KEY=(IL/2)*MUMAX+MU(JND1)-JND1+INW1
+ IF(JND1.LT.INW1) KEY=(IL/2)*MUMAX+MU(INW1)-INW1+JND1
+ SG=REAL(SIGN(1,KNW1))
+ SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
+ ENDIF
+ IF(KNX1.NE.0) THEN
+ IF(JND2.GT.INX1) KEY=(IL/2)*MUMAX+MU(JND2)-JND2+INX1
+ IF(JND2.LT.INX1) KEY=(IL/2)*MUMAX+MU(INX1)-INX1+JND2
+ SG=REAL(SIGN(1,KNX1))
+ SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
+ ENDIF
+ IF(KNY1.NE.0) THEN
+ IF(JND3.GT.INY1) KEY=(IL/2)*MUMAX+MU(JND3)-JND3+INY1
+ IF(JND3.LT.INY1) KEY=(IL/2)*MUMAX+MU(INY1)-INY1+JND3
+ SG=REAL(SIGN(1,KNY1))
+ SYS(KEY)=SYS(KEY)+SG*SSS*REAL(IL)*SIDE*V(K2,K1+1)
+ ENDIF
+ 80 CONTINUE
+ 81 CONTINUE
+ 82 CONTINUE
+ 83 CONTINUE
+ ENDIF
+ ENDIF
+ 90 CONTINUE
+ 100 CONTINUE
+ RETURN
+ END