diff options
Diffstat (limited to 'Trivac/src/NSSLR3.f90')
| -rwxr-xr-x | Trivac/src/NSSLR3.f90 | 244 |
1 files changed, 244 insertions, 0 deletions
diff --git a/Trivac/src/NSSLR3.f90 b/Trivac/src/NSSLR3.f90 new file mode 100755 index 0000000..436649b --- /dev/null +++ b/Trivac/src/NSSLR3.f90 @@ -0,0 +1,244 @@ +subroutine NSSLR3(keff, ng, bndtl, xxx, dely, delz, diff, sigr, scat, & +& chi, nusigf, L, R) +! +!----------------------------------------------------------------------- +! +!Purpose: +! Compute the 3D ANM coupling matrices for a single node. +! +!Copyright: +! Copyright (C) 2023 Ecole Polytechnique de Montreal +! This library is free software; you can redistribute it and/or +! modify it under the terms of the GNU Lesser General Public +! License as published by the Free Software Foundation; either +! version 2.1 of the License, or (at your option) any later version +! +!Author(s): A. Hebert +! +!Parameters: input +! keff effective multiplication factor. +! ng number of energy groups. +! bndtl set to 'flat' or 'quadratic'. +! xxx node support along X-axis. +! dely node width along Y-axis. +! delz node width along Z-axis. +! diff diffusion coefficient array (cm). +! sigr removal cross section array (cm-1). +! scat P0 scattering cross section matrix (cm^-1). +! chi fission spectrum array. +! nusigf nu*fission cross section array (cm^-1). +! +!Parameters: output +! L left nodal coupling matrix. +! R right nodal coupling matrix. +! +!----------------------------------------------------------------------- + ! + !---- + ! subroutine arguments + !---- + integer, intent(in) :: ng + real, intent(in) :: keff, xxx(4), dely, delz + real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf + real, dimension(ng,ng), intent(in) :: scat + character(len=12), intent(in) :: bndtl + real(kind=8), dimension(ng,14*ng), intent(out) :: L, R + !---- + ! local variables + !---- + real(kind=8) :: m0(3,3),m2(3,3),m3(2,3),m4(1,3),Lambda_r,sqla,mmax2 + !---- + ! allocatable arrays + !---- + complex(kind=8), allocatable, dimension(:,:) :: T,Lambda + real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm,Mp,Nm,Np, & + & GAR1,GAR2,GAR3,GAR4,Vm,Vp,Um,Up,MAT1,MAT2,S13 + !---- + ! scratch storage allocation + !---- + allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), & + & Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng),Nm(ng,2*ng), & + & Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng),GAR3(ng,14*ng), & + & GAR4(ng,14*ng),Vm(2*ng,3*ng),Vp(2*ng,3*ng),Um(ng,3*ng), & + & Up(ng,3*ng),MAT1(ng,14*ng),MAT2(ng,14*ng)) + ! + ! quadratic leakage and boundary conditions + xmm=xxx(1) ; xm=xxx(2) ; xp=xxx(3) ; xpp=xxx(4) ; delx=xp-xm ; + if(xmm == -99999.) then + ! Vacuum or zero flux node at left boundary + xmm=2.0*xm-xp + m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 + m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 + m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 + call ALINVD(3,m0,3,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(1)') + m0(:3,1)=0.0d0 + elseif(xpp == -99999.) then + ! Vacuum or zero flux node at right boundary + xpp=2.0*xp-xm + m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 + m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 + m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 + call ALINVD(3,m0,3,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(2)') + m0(:3,3)=0.0d0 + else + ! Internal node + m0(:3,1)=1.0d0 ; m0(1,2)=(xmm+xm)/2.0d0 ; m0(1,3)=(xmm**2+xmm*xm+xm**2)/3.0d0 + m0(2,2)=(xm+xp)/2.0d0 ; m0(2,3)=(xm**2+xm*xp+xp**2)/3.0d0 + m0(3,2)=(xp+xpp)/2.0d0 ; m0(3,3)=(xp**2+xp*xpp+xpp**2)/3.0d0 + call ALINVD(3,m0,3,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(3)') + endif + if(bndtl == 'flat') then + ! flat leakage approximation + m0(:3,:3)=0.0d0 ; m0(1,2)=1.0d0 + endif + !---- + ! compute matrices L and R + !---- + Mm(:,:)=0.0d0 + Mp(:,:)=0.0d0 + Nm(:,:)=0.0d0 + Np(:,:)=0.0d0 + DI(:,:)=0.0d0 + Vm(:,:)=0.0d0 + Vp(:,:)=0.0d0 + Um(:,:)=0.0d0 + Up(:,:)=0.0d0 + do ig=1,ng + do jg=1,ng + if(ig == jg) then + F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig) + else + F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig) + endif + enddo + DI(ig,ig)=1./diff(ig) + enddo + maxiter=40 + call ALHQR(ng,ng,F,maxiter,iter,T,Lambda) + mmax2=0.0d0 + do ig=1,ng + do jg=1,ng + mmax2=max(mmax2,abs(aimag(T(ig,jg)))) + enddo + enddo + if(mmax2 > 1.0e-6) then + write(6,'(3h T=)') + do ig=1,ng + write(6,'(1p,12e12.4)') T(ig,:) + enddo + call XABORT('NSSLR3: complex eigenvalues.') + endif + T_r(:,:)=real(T(:,:),8) + do ig=1,ng + Lambda_r=real(Lambda(ig,ig),8) + sqla=sqrt(abs(Lambda_r)) + m2(:3,:3)=0.0d0 + m2(1,1)=1.0d0/Lambda_r ; m2(1,3)=-2.0d0/Lambda_r**2 + m2(2,2)=1.0d0/Lambda_r ; m2(3,3)=1.0d0/Lambda_r + m2(:3,:3)=matmul(m2(:3,:3),m0(:3,:3)) + m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2. ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0 + m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xm + m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3)) + Vm(ig,ig)=m3(1,1) ; Vm(ig,ng+ig)=m3(1,2) ; Vm(ig,2*ng+ig)=m3(1,3) ; + Vm(ng+ig,ig)=m3(2,1) ; Vm(ng+ig,ng+ig)=m3(2,2) ; Vm(ng+ig,2*ng+ig)=m3(2,3) ; + m3(1,1)=1.0d0 ; m3(1,2)=(xm+xp)/2.0d0 ; m3(1,3)=(xm**2+xm*xp+xp**2)/3.0d0 + m3(2,1)=0.0d0 ; m3(2,2)=-1.0d0 ; m3(2,3)=-2.0d0*xp + m3(:2,:3)=matmul(m3(:2,:3),m2(:3,:3)) + Vp(ig,ig)=m3(1,1) ; Vp(ig,ng+ig)=m3(1,2) ; Vp(ig,2*ng+ig)=m3(1,3) ; + Vp(ng+ig,ig)=m3(2,1) ; Vp(ng+ig,ng+ig)=m3(2,2) ; Vp(ng+ig,2*ng+ig)=m3(2,3) ; + m4(1,1)=1.0d0 ; m4(1,2)=xm ; m4(1,3)=xm**2 + m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3)) + Um(ig,ig)=m4(1,1) ; Um(ig,ng+ig)=m4(1,2) ; Um(ig,2*ng+ig)=m4(1,3) ; + m4(1,1)=1.0d0 ; m4(1,2)=xp ; m4(1,3)=xp**2 + m4(:1,:3)=matmul(m4(:1,:3),m2(:3,:3)) + Up(ig,ig)=m4(1,1) ; Up(ig,ng+ig)=m4(1,2) ; Up(ig,2*ng+ig)=m4(1,3) ; + if(delx*sqla < 1.e-6) then + if(Lambda_r >= 0) then + Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1. + Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2. + Mm(ng+ig,ng+ig)=-sqla + Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx + Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx + Nm(ig,ig)=1. + Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1. + Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla) + else + Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1. + Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1. + Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ; + Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx + Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx + Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ; + Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1. + Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1. + endif + else if(Lambda_r >= 0) then + Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla) + Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla) + Mm(ng+ig,ig)=sqla*sin(sqla*xm) + Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm) + Mp(ng+ig,ig)=sqla*sin(sqla*xp) + Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp) + Nm(ig,ig)=cos(sqla*xm) + Nm(ig,ng+ig)=sin(sqla*xm) + Np(ig,ig)=cos(sqla*xp) + Np(ig,ng+ig)=sin(sqla*xp) + else + Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla) + Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla) + Mm(ng+ig,ig)=-sqla*exp(sqla*xm) + Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm) + Mp(ng+ig,ig)=-sqla*exp(sqla*xp) + Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp) + Nm(ig,ig)=exp(sqla*xm) + Nm(ig,ng+ig)=exp(-sqla*xm) + Np(ig,ig)=exp(sqla*xp) + Np(ig,ng+ig)=exp(-sqla*xp) + endif + Mp(ig,ig)=Mm(ig,ig) + Mp(ig,ng+ig)=Mm(ig,ng+ig) + enddo + ! + TI(:,:)=T_r(:,:) + call ALINVD(2*ng,Mm,2*ng,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(4)') + call ALINVD(2*ng,Mp,2*ng,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(5)') + call ALINVD(ng,TI,ng,ier) + if(ier /= 0) call XABORT('NSSLR3: singular matrix.(6)') + ! + GAR1=matmul(Nm,Mm) ! ng,2*ng + GAR2=matmul(Np,Mp) ! ng,2*ng + S=matmul(TI,DI) ! ng,ng + ! + MAT1(:ng,:2*ng)=GAR1(:ng,:2*ng) + MAT1(:ng,2*ng+1:5*ng)=-Um(:ng,:3*ng)/dely+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely + MAT1(:ng,5*ng+1:8*ng)=Um(:ng,:3*ng)/dely-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/dely + MAT1(:ng,8*ng+1:11*ng)=-Um(:ng,:3*ng)/delz+matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz + MAT1(:ng,11*ng+1:14*ng)=Um(:ng,:3*ng)/delz-matmul(GAR1(:ng,:2*ng),Vm(:2*ng,:3*ng))/delz + MAT2(:ng,:2*ng)=GAR2(:ng,:2*ng) + MAT2(:ng,2*ng+1:5*ng)=-Up(:ng,:3*ng)/dely+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely + MAT2(:ng,5*ng+1:8*ng)=Up(:ng,:3*ng)/dely-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/dely + MAT2(:ng,8*ng+1:11*ng)=-Up(:ng,:3*ng)/delz+matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz + MAT2(:ng,11*ng+1:14*ng)=Up(:ng,:3*ng)/delz-matmul(GAR2(:ng,:2*ng),Vp(:2*ng,:3*ng))/delz + ! + GAR3=matmul(T_r,MAT1) ! ng,14*ng + GAR4=matmul(T_r,MAT2) ! ng,14*ng + L(:ng,:ng)=matmul(GAR3(:ng,:ng),TI(:ng,:ng)) + R(:ng,:ng)=matmul(GAR4(:ng,:ng),TI(:ng,:ng)) + allocate(S13(13*ng,13*ng)) + S13(:,:)=0.0d0 ! 13*ng,13*ng + do i=1,13 + S13((i-1)*ng+1:i*ng,(i-1)*ng+1:i*ng)=S(:ng,:ng) + enddo + L(:ng,ng+1:14*ng)=matmul(GAR3(:ng,ng+1:14*ng),S13(:13*ng,:13*ng)) + R(:ng,ng+1:14*ng)=matmul(GAR4(:ng,ng+1:14*ng),S13(:13*ng,:13*ng)) + !---- + ! scratch storage deallocation + !---- + deallocate(S13,MAT2,MAT1,Up,Um,Vp,Vm,GAR4,GAR3,GAR2,GAR1,Np,Nm,Mp,Mm,S, & + & Lambda,DI,TI,T,T_r,F) +end subroutine NSSLR3 |
