diff options
Diffstat (limited to 'Trivac/src/FLDBH2.f')
| -rwxr-xr-x | Trivac/src/FLDBH2.f | 95 |
1 files changed, 95 insertions, 0 deletions
diff --git a/Trivac/src/FLDBH2.f b/Trivac/src/FLDBH2.f new file mode 100755 index 0000000..7dd7db4 --- /dev/null +++ b/Trivac/src/FLDBH2.f @@ -0,0 +1,95 @@ +*DECK FLDBH2 + SUBROUTINE FLDBH2 (ISPLH,NEL,NUN,NELEM,EVECT,VOL,IDL,KN,QFR,RH,RT) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Calculation of the averaged flux with a linear Lagrangian finite +* element or mesh corner finite difference method in hexagonal geometry. +* +*Copyright: +* Copyright (C) 2002 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* ISPLH type of hexagonal mesh-splitting: =1 for complete hexagons; +* >1 for triangular mesh-splitting. +* NEL number of hexagons. +* NUN number of unknowns per energy group. +* NELEM number of finite elements (hexagons or triangles) excluding +* the virtual elements. +* EVECT variational coefficients of the flux. The information is +* contained in position EVECT(1) to EVECT(LL4) where LL4 is the +* order of the system matrices. +* VOL volume of each hexagon. +* IDL position of the average flux component associated with each +* hexagon. +* KN element-ordered unknown list. The dimension of KN is equal +* to (LC+1)*NELEM where LC=6 (hexagons) or 3 (triangles). +* QFR element-ordered albedo information. The dimension of QFR is +* equal to (LC+1)*NELEM. +* RH unit matrix +* RT unit matrix +* +*Parameters: output +* EVECT averaged fluxes. The information is contained in positions +* EVECT(IDL(I)). +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER ISPLH,NEL,NUN,NELEM,IDL(NEL),KN(*) + REAL EVECT(NUN),VOL(NEL),QFR(*),RH(6,6),RT(3,3) +*---- +* LOCAL VARIABLES +*---- + REAL T(6) +*---- +* COMPUTE THE LINEAR PRODUCT VECTOR T +*---- + IF(ISPLH.EQ.1) THEN +* HEXAGONAL BASIS. + LC=6 + DO 15 I=1,6 + T(I)=0.0 + DO 10 J=1,6 + T(I)=T(I)+RH(I,J) + 10 CONTINUE + 15 CONTINUE + CONST=1.5*SQRT(3.0) + ELSE +* TRIANGULAR BASIS. + LC=3 + DO 25 I=1,3 + T(I)=0.0 + DO 20 J=1,3 + T(I)=T(I)+RT(I,J) + 20 CONTINUE + 25 CONTINUE + CONST=0.25*SQRT(3.0) + ENDIF +* + DO 30 KHEX=1,NEL + IF(IDL(KHEX).NE.0) EVECT(IDL(KHEX))=0.0 + 30 CONTINUE + NUM1=0 + DO 60 K=1,NELEM + KHEX=KN(NUM1+LC+1) + IF(VOL(KHEX).EQ.0.0) GO TO 50 + DO 40 I=1,LC + IND1=KN(NUM1+I) + IF(IND1.EQ.0) GO TO 40 + SS=T(I)*QFR(NUM1+LC+1)/(CONST*VOL(KHEX)) + EVECT(IDL(KHEX))=EVECT(IDL(KHEX))+SS*EVECT(IND1) + 40 CONTINUE + 50 NUM1=NUM1+LC+1 + 60 CONTINUE + RETURN + END |
