summaryrefslogtreecommitdiff
path: root/Dragon/src/USSIT0.f
diff options
context:
space:
mode:
Diffstat (limited to 'Dragon/src/USSIT0.f')
-rw-r--r--Dragon/src/USSIT0.f670
1 files changed, 670 insertions, 0 deletions
diff --git a/Dragon/src/USSIT0.f b/Dragon/src/USSIT0.f
new file mode 100644
index 0000000..6e0af2d
--- /dev/null
+++ b/Dragon/src/USSIT0.f
@@ -0,0 +1,670 @@
+*DECK USSIT0
+ SUBROUTINE USSIT0(MAXNOR,NGRP,MASKG,IRES,IPLI0,IPTRK,IFTRAK,
+ 1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IREX,
+ 2 SIGGAR,TITR,ICORR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,STGAR,
+ 3 SSGAR,SWGAR,VOLMER,UNGAR)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Compute the multiband fluxes as required by the subgroup method using
+* a response matrix approach (Ribon extended subgroup method):
+* a) assume a single resonant isotope;
+* b) use the standard solution doors of Dragon.
+*
+*Copyright:
+* Copyright (C) 2003 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* MAXNOR maximum order of the probability tables (PT).
+* NGRP number of energy group.
+* MASKG energy group mask pointing on self-shielded groups.
+* IRES index of the resonant isotope.
+* IPLI0 pointer to the internal microscopic cross section library
+* builded by the self-shielding module.
+* IPTRK pointer to the tracking (L_TRACK signature).
+* IFTRAK file unit number used to store the tracks.
+* CDOOR name of the geometry/solution operator.
+* IMPX print flag (equal to zero for no print).
+* NBMIX number of mixtures in the internal library.
+* NREG number of regions.
+* NUN number of unknowns in the flux or source vector in one
+* energy group and one band.
+* NL number of Legendre orders required in the calculation
+* (NL=1 or higher).
+* IPHASE type of flux solution (=1 use a native flux solution door;
+* =2 use collision probabilities).
+* MAT index-number of the mixture type assigned to each volume.
+* VOL volumes.
+* KEYFLX pointers of fluxes in unknown vector.
+* LEAKSW leakage switch (LEAKSW=.TRUE. if neutron leakage through
+* external boundary is present).
+* IREX fuel region index assigned to each mixture. Equal to zero
+* in non-resonant mixtures or in mixtures not used.
+* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture:
+* (*,*,*,1) total; (*,*,*,2) transport correction;
+* (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
+* TITR title.
+* ICORR mutual resonance shielding flag (=1 to suppress the model
+* in cases it is required in LIB operator).
+* NIRES exact number of correlated resonant isotopes.
+* NBNRS number of correlated fuel regions.
+* NOR exact order of the probability table.
+* CONR number density of the resonant isotopes.
+* GOLD type of self-shielding model (=1.0 physical probability
+* tables; =-999.0 Ribon extended method).
+* IPPT1 pointer to LCM directory of each resonant isotope.
+* IPPT2 information related to each resonant isotope:
+* IPPT2(:,1) index of a resonant region (used with infinite
+* dilution case);
+* IPPT2(:,2:4) alias name of resonant isotope.
+* STGAR averaged microscopic total xs in resonant region.
+* SSGAR averaged microscopic scattering xs in resonant region.
+* SWGAR microscopic secondary slowing-down cross sections (used
+* if GOLD=-999.).
+* VOLMER volumes of the resonant and non-resonant regions.
+*
+*Parameters: output
+* UNGAR averaged flux unknowns.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+ USE DOORS_MOD
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
+ INTEGER MAXNOR,NGRP,IRES,IFTRAK,IMPX,NBMIX,NREG,NUN,NL,
+ 1 IPHASE,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),ICORR,NIRES,NBNRS,
+ 2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
+ REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),
+ 1 CONR(NBNRS,NIRES),GOLD(NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
+ 2 SSGAR(NBNRS,NIRES,NL,NGRP),SWGAR(NBNRS,NIRES,NGRP),
+ 3 VOLMER(0:NBNRS),UNGAR(NUN,NIRES,NGRP)
+ LOGICAL LEAKSW,MASKG(NGRP)
+ CHARACTER CDOOR*12,TITR*72
+*----
+* LOCAL VARIABLES
+*----
+ TYPE(C_PTR) IPSYS,KPSYS,JPLIB,KPLIB,JPLI0,IPMACR,IPSOU
+ LOGICAL EMPTY,LCM,LEXAC,REBFLG
+ CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12,HSMG*131
+*----
+* ALLOCATABLE ARRAYS
+*----
+ INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
+ REAL, ALLOCATABLE, DIMENSION(:) :: SIGTXS,SIGS0X,SIGG,AWPHI,FUN,
+ 1 SUN
+ REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,WSLD,SIGWS,PAV,
+ 1 SIGX
+ REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XFLUX
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
+ TYPE(C_PTR) SIGP_PTR
+ REAL, POINTER, DIMENSION(:) :: SIGP
+*----
+* STATEMENT FUNCTIONS
+*----
+ INM(IND,INOR,NBNRS)=(INOR-1)*NBNRS+IND
+*----
+* FIND THE NUMBER OF COMPONENTS REQUIRED AND ALLOCATE THE LIST OF
+* ASSEMBLY MATRICES.
+*----
+ NASM=0
+ DO 10 IGRP=1,NGRP
+ IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
+ NASM=NASM+NOR(IRES,IGRP)
+ ENDIF
+ 10 CONTINUE
+ IF(NASM.EQ.0) RETURN
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ ALLOCATE(XFLUX(NBNRS,MAXNOR,NIRES),SIGTXS(0:NBMIX),
+ 1 SIGS0X(0:NBMIX),SIGG(0:NBMIX),AWPHI(0:NBNRS),WEIGH(MAXNOR,NIRES),
+ 2 TOTPT(MAXNOR,NIRES),WSLD(MAXNOR**2,NIRES),SIGWS(MAXNOR,NIRES),
+ 3 PAV(0:NBNRS,0:NBNRS),SIGX(NBNRS,NIRES))
+ ALLOCATE(MATRIX(NBNRS*MAXNOR,NBNRS*MAXNOR+1))
+*----
+* CREATE A SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
+*----
+ WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
+ CALL LCMSIX(IPLI0,CBDPNM,1)
+ JPLI0=LCMGID(IPLI0,'NWT0-PT')
+ IPSYS=LCMLID(IPLI0,'ASSEMB-RIBON',NASM)
+ CALL LCMSIX(IPLI0,' ',2)
+*----
+* LOOP OVER THE ENERGY GROUPS.
+*----
+ ALLOCATE(NPSYS(NASM))
+ IASM=0
+ DO 120 IGRP=1,NGRP
+ IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
+ IF(IMPX.GT.1) THEN
+ WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
+ WRITE(6,'(36H USSIT0: PROCESS CORRELATED ISOTOPE ,A12,
+ 1 11H WITH INDEX,I3,9H IN GROUP,I4,22H (RESPONSE MATRIX APPR,
+ 2 6HOACH).)') TEXT12,IRES,IGRP
+ ENDIF
+ DO 20 JRES=1,NIRES
+ IF(GOLD(JRES,IGRP).NE.GOLD(IRES,IGRP)) THEN
+ WRITE(HSMG,'(34HUSSIT0: PTSL NOT SET FOR ISOTOPE '',3A4,
+ 1 10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
+ CALL XABORT(HSMG)
+ ELSE IF(NOR(JRES,IGRP).GT.MAXNOR) THEN
+ CALL XABORT('USSIT0: MAXNOR OVERFLOW.')
+ ENDIF
+ 20 CONTINUE
+*----
+* COLLECT THE BASE POINTS IN TOTAL CROSS SECTION.
+*----
+ NORI=NOR(IRES,IGRP)
+ DO 40 JRES=1,NIRES
+ JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
+ CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
+ IF(ILONG.NE.0) THEN
+ KPLIB=LCMGIL(JPLIB,IGRP)
+ CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
+ CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
+ NPART=LENG/MAXNOR
+ IF(LCM) THEN
+ CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
+ CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
+ ELSE
+ ALLOCATE(SIGP(MAXNOR*NPART))
+ CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
+ ENDIF
+ DO 30 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
+ 30 CONTINUE
+ IF(.NOT.LCM) DEALLOCATE(SIGP)
+ ELSE
+ WEIGH(1,JRES)=1.0
+ TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
+ ENDIF
+ 40 CONTINUE
+*----
+* SET THE MIXTURE-DEPENDENT CROSS SECTIONS.
+*----
+ DO 110 INOR=1,NORI
+ SIGTXS(0:NBMIX)=0.0
+ SIGS0X(0:NBMIX)=0.0
+ DO 90 IBM=1,NBMIX
+ IND=IREX(IBM)
+ DO 80 JRES=0,NIRES
+ IF(JRES.EQ.0) THEN
+ SIGTXS(IBM)=SIGTXS(IBM)+(SIGGAR(IBM,0,IGRP,1)-
+ 1 SIGGAR(IBM,0,IGRP,2))
+ SIGS0X(IBM)=SIGS0X(IBM)-SIGGAR(IBM,0,IGRP,2)
+ ELSE IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
+ SIGTXS(IBM)=SIGTXS(IBM)+SIGGAR(IBM,JRES,IGRP,1)
+ ENDIF
+ 80 CONTINUE
+ IF(IND.GT.0) THEN
+ SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,IRES)*TOTPT(INOR,IRES)
+ ENDIF
+ 90 CONTINUE
+ IASM=IASM+1
+ NPSYS(IASM)=IASM
+ KPSYS=LCMDIL(IPSYS,IASM)
+ CALL LCMPUT(KPSYS,'DRAGON-TXSC',NBMIX+1,2,SIGTXS)
+ CALL LCMPUT(KPSYS,'DRAGON-S0XSC',NBMIX+1,2,SIGS0X)
+ 110 CONTINUE
+ ELSE IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
+ IF(LENG0.NE.0) THEN
+ WRITE(HSMG,'(42HUSSIT0: UNEXPECTED SELF-SHIELDING DATA FOU,
+ 1 11HND IN GROUP,I5,1H.)') IGRP
+ CALL XABORT(HSMG)
+ ENDIF
+ ENDIF
+ 120 CONTINUE
+*----
+* ASSEMBLY MATRIX OR REDUCED COLLISION PROBABILITIES CALCULATION.
+*----
+ NANI=1
+ KNORM=1
+ NALBP=0
+ IMPY=MAX(0,IMPX-3)
+ IF(IPHASE.EQ.1) THEN
+* USE A NATIVE DOOR.
+ ISTRM=1
+ NW=0
+ CALL DOORAV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
+ 1 NBMIX,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
+ ELSE IF(IPHASE.EQ.2) THEN
+* USE A COLLISION PROBABILITY DOOR.
+ IPIJK=1
+ ITPIJ=1
+ CALL DOORPV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
+ 1 NBMIX,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,NALBP)
+ ENDIF
+ DEALLOCATE(NPSYS)
+*----
+* LOOP OVER THE ENERGY GROUPS.
+*----
+ IASM=0
+ DO 300 IGRP=1,NGRP
+ IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
+ IF(IMPX.GT.5) WRITE(6,'(/25H USSIT0: PROCESSING GROUP,I5,
+ > 6H WITH ,A,1H.)') IGRP,CDOOR
+ NORI=NOR(IRES,IGRP)
+*----
+* COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
+*----
+ ALLOCATE(NPSYS(NORI*(NBNRS+1)))
+ ALLOCATE(FUN(NUN*NORI*(NBNRS+1)),SUN(NUN*NORI*(NBNRS+1)))
+ FUN(:NUN*NORI*(NBNRS+1))=0.0
+ SUN(:NUN*NORI*(NBNRS+1))=0.0
+ DO 145 INOR=1,NORI
+ DO 140 JNBN=0,NBNRS
+ NPSYS((INOR-1)*(NBNRS+1)+JNBN+1)=IASM+INOR
+ T1=0.0
+ DO 125 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 125
+ IND=IREX(IBM)
+ IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
+ T1=T1+SIGGAR(IBM,0,IGRP,3)*VOL(I)
+ ELSE IF(IND.EQ.JNBN) THEN
+ T1=T1+VOL(I)
+ ENDIF
+ 125 CONTINUE
+ IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN
+ SIGG(0:NBMIX)=0.0
+ DO 130 IBM=1,NBMIX
+ IND=IREX(IBM)
+ IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
+ SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,0,IGRP,3)
+ ELSE IF(IND.EQ.JNBN) THEN
+ SIGG(IBM)=SIGG(IBM)+1.0
+ ENDIF
+ 130 CONTINUE
+ CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
+
+ DO 135 I=1,NUN
+ IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/T1
+ 135 CONTINUE
+ 140 CONTINUE
+ 145 CONTINUE
+*----
+* SOLVE FOR THE MULTIBAND FLUX.
+*----
+ IDIR=0
+ NABS=NORI*(NBNRS+1)
+ LEXAC=.FALSE.
+ IPMACR=C_NULL_PTR
+ IPSOU=C_NULL_PTR
+ REBFLG=.FALSE.
+ CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
+ 1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
+ 2 IPSOU,REBFLG)
+*----
+* HOMOGENIZE THE MULTIBAND FLUX.
+*----
+ DO 170 INOR=1,NORI
+ PAV(0:NBNRS,0:NBNRS)=0.0
+ DO 155 JNBN=0,NBNRS
+ T1=0.0
+ DO 150 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 150
+ IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)
+ PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF)*VOL(I)
+ 150 CONTINUE
+ 155 CONTINUE
+ DO 165 I=0,NBNRS
+ DO 160 J=0,NBNRS
+ IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
+ 160 CONTINUE
+ 165 CONTINUE
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
+ 170 CONTINUE
+ DEALLOCATE(SUN,FUN,NPSYS)
+*----
+* COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
+*----
+ DO 200 JRES=1,NIRES
+ JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
+ CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
+ IF(ILONG.NE.0) THEN
+ KPLIB=LCMGIL(JPLIB,IGRP)
+ CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
+ CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
+ NPART=LENG/MAXNOR
+ IF(LCM) THEN
+ CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
+ CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
+ ELSE
+ ALLOCATE(SIGP(MAXNOR*NPART))
+ CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
+ ENDIF
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ DO 180 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
+ 180 CONTINUE
+ CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
+ CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
+ ELSE
+ DO 190 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
+ SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
+ 190 CONTINUE
+ ENDIF
+ IF(.NOT.LCM) DEALLOCATE(SIGP)
+ ELSE
+ WEIGH(1,JRES)=1.0
+ TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
+ WSLD(1,JRES)=1.0
+ ELSE
+ SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
+ ENDIF
+ ENDIF
+ 200 CONTINUE
+*----
+* TAKE INTO ACCOUNT CORRELATION EFFECTS BETWEEN ISOTOPES USING THE
+* MUTUAL SELF-SHIELDING MODEL.
+*----
+ IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.
+ 1 (ICORR.EQ.0)) THEN
+ DO 225 JRES=1,NIRES
+ DO 220 IND=1,NBNRS
+ SIGX(IND,JRES)=0.0
+ T1=0.0
+ T2=0.0
+ DO 215 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 215
+ IF(IND.EQ.IREX(IBM)) THEN
+ T1=T1+(SIGGAR(IBM,JRES,IGRP,1)-SIGGAR(IBM,JRES,IGRP,2))*
+ 1 VOL(I)
+ T2=T2+VOL(I)
+ ENDIF
+ 215 CONTINUE
+ IF(T2.NE.0.0) SIGX(IND,JRES)=T1/T2
+ 220 CONTINUE
+ 225 CONTINUE
+ CALL USSCOR(MAXNOR,IGRP,IPSYS,IASM,IRES,NBNRS,NIRES,
+ 1 NOR(1,IGRP),CONR,IPPT1,IPPT2,WEIGH,TOTPT,SIGX,VOLMER)
+ ENDIF
+*----
+* RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
+*----
+ DO 272 INOR=1,NORI
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
+*----
+* LOOP OVER THE PRIMARY SUBGROUPS. NORI+1 IS THE SOURCE.
+*----
+ DO 271 JNOR=1,NORI+1
+ IF(JNOR.LE.NORI) THEN
+ JNBMAX=NBNRS
+ ELSE
+ JNBMAX=1
+ ENDIF
+ DO 270 JNBN=1,JNBMAX
+ AWPHI(1:NBNRS)=0.0
+ DO 250 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 250
+ JND=IREX(IBM)
+ QQQ=0.0
+ IF(JNOR.EQ.NORI+1) THEN
+ DO 230 JRES=0,NIRES
+ IF(JRES.EQ.0) THEN
+ QQQ=QQQ+SIGGAR(IBM,0,IGRP,3)
+ ELSE IF((JRES.NE.IRES).AND.(JND.GT.0)) THEN
+ QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
+ ENDIF
+ 230 CONTINUE
+ ELSE IF(JND.EQ.JNBN) THEN
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
+ ELSE
+ WWW=WEIGH(JNOR,IRES)
+ ENDIF
+ QQQ=QQQ-WWW*CONR(JND,IRES)*SIGWS(JNOR,IRES)
+ ENDIF
+ DO 240 IND=1,NBNRS
+ AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*QQQ*VOL(I)/VOLMER(JND)
+ 240 CONTINUE
+ 250 CONTINUE
+ DO 260 IND=1,NBNRS
+ MATRIX(INM(IND,INOR,NBNRS),INM(JNBN,JNOR,NBNRS))=AWPHI(IND)
+ 260 CONTINUE
+ 270 CONTINUE
+ 271 CONTINUE
+ 272 CONTINUE
+*
+ DO 280 I=1,NBNRS*NORI
+ MATRIX(I,I)=MATRIX(I,I)+1.0D0
+ 280 CONTINUE
+ CALL ALSBD(NBNRS*NORI,1,MATRIX,IER,NBNRS*MAXNOR)
+ IF(IER.NE.0) CALL XABORT('USSIT0: SINGULAR MATRIX.')
+ XFLUX(:NBNRS,:MAXNOR,IRES)=0.0
+ DO 295 IND=1,NBNRS
+ DO 290 INOR=1,NORI
+ I1=INM(IND,INOR,NBNRS)
+ XFLUX(IND,INOR,IRES)=REAL(MATRIX(I1,NBNRS*NORI+1))
+ 290 CONTINUE
+ 295 CONTINUE
+* END OF RESPONSE MATRIX APPROACH.
+*
+ CALL LCMPDL(JPLI0,IGRP,NBNRS*NORI,2,XFLUX(1,1,IRES))
+ IASM=IASM+NORI
+ ENDIF
+ 300 CONTINUE
+*----
+* COMPUTE UNGAR, THE REGION-ORDERED FLUX.
+*----
+ ALLOCATE(NPSYS(NASM),FUN(NUN*NASM),SUN(NUN*NASM))
+ SUN(:NUN*NASM)=0.0
+ IASM=0
+ DO 420 IGRP=1,NGRP
+ IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
+ NORI=NOR(IRES,IGRP)
+*----
+* RECOVER THE PREVIOUS FLUXES.
+*----
+ WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
+ CALL LCMSIX(IPLI0,CBDPNM,1)
+ JPLI0=LCMGID(IPLI0,'NWT0-PT')
+ CALL LCMLEL(JPLI0,IGRP,ILON,ITYLCM)
+ IF(ILON.GT.NBNRS*MAXNOR) THEN
+ WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
+ WRITE(HSMG,'(34HUSSIT0: FLUX OVERFLOW FOR ISOTOPE ,A12)')
+ 1 TEXT12
+ CALL XABORT(HSMG)
+ ENDIF
+ CALL LCMGDL(JPLI0,IGRP,XFLUX(1,1,IRES))
+ CALL LCMSIX(IPLI0,' ',2)
+*----
+* COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
+*----
+ DO 340 JRES=1,NIRES
+ JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
+ CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
+ IF(ILONG.NE.0) THEN
+ KPLIB=LCMGIL(JPLIB,IGRP)
+ CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
+ CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
+ NPART=LENG/MAXNOR
+ IF(LCM) THEN
+ CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
+ CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
+ ELSE
+ ALLOCATE(SIGP(MAXNOR*NPART))
+ CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
+ ENDIF
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ DO 320 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ 320 CONTINUE
+ CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
+ CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
+ ELSE
+ DO 330 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
+ 330 CONTINUE
+ ENDIF
+ IF(.NOT.LCM) DEALLOCATE(SIGP)
+ ELSE
+ WEIGH(1,JRES)=1.0
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
+ WSLD(1,JRES)=1.0
+ ELSE
+ SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
+ ENDIF
+ ENDIF
+ 340 CONTINUE
+*----
+* COMPUTE THE AVERAGED SOURCE.
+*----
+ DO 380 INOR=1,NORI
+ NPSYS(IASM+INOR)=IASM+INOR
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
+ IF(ILENG.EQ.NUN) THEN
+ CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((IASM+INOR-1)*NUN+1))
+ ELSE
+ FUN((IASM+INOR-1)*NUN+1:(IASM+INOR)*NUN)=0.0
+ ENDIF
+ SIGG(0)=0.0
+ DO 370 IBM=1,NBMIX
+ QQQ=SIGGAR(IBM,0,IGRP,3)
+ IND=IREX(IBM)
+ DO 350 JRES=1,NIRES
+ IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
+ QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
+ ENDIF
+ 350 CONTINUE
+ IF(IND.GT.0) THEN
+ DO 360 JNOR=1,NORI
+ IF(GOLD(IRES,IGRP).EQ.-999.) THEN
+ WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
+ ELSE
+ WWW=WEIGH(JNOR,IRES)
+ ENDIF
+ QQQ=QQQ+WWW*CONR(IND,IRES)*SIGWS(JNOR,IRES)*
+ 1 XFLUX(IND,JNOR,IRES)
+ 360 CONTINUE
+ ENDIF
+ SIGG(IBM)=QQQ*WEIGH(INOR,IRES)
+ 370 CONTINUE
+ IOF=(IASM+INOR-1)*NUN
+ CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
+ 380 CONTINUE
+*
+ IF(IMPX.GT.0) THEN
+ WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
+ WRITE(6,'(15H USSIT0: GROUP=,I5,24H. SUBGROUP CALCULATION B,
+ 1 37HASED ON RESPONSE MATRICES. ISOTOPE='',A12,2H''.)') IGRP,
+ 2 TEXT12
+ ENDIF
+ IF(IMPX.GT.2) THEN
+ DO 400 IND=1,NBNRS
+ T1=0.0
+ DO 390 INOR=1,NOR(IRES,IGRP)
+ T1=T1+WEIGH(INOR,IRES)*XFLUX(IND,INOR,IRES)
+ 390 CONTINUE
+ WRITE(6,'(31H USSIT0: AVERAGED FLUX IN GROUP,I4,8H AND RES,
+ 1 12HONANT REGION,I4,21H FOR RESONANT ISOTOPE,I4,2H =,F9.5)')
+ 2 IGRP,IND,IRES,T1
+ 400 CONTINUE
+ ENDIF
+*
+ IASM=IASM+NORI
+ ENDIF
+ 420 CONTINUE
+*----
+* SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
+*----
+ IDIR=0
+ LEXAC=.FALSE.
+ IF(IMPX.GT.5) WRITE(6,'(/33H USSIT0: PROCESSING MULTIBAND FLU,
+ 1 14HX (IL=1) WITH ,A,1H.)') CDOOR
+ IPMACR=C_NULL_PTR
+ IPSOU=C_NULL_PTR
+ REBFLG=.FALSE.
+ CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NASM,NBMIX,
+ 1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
+ 2 IPSOU,REBFLG)
+*----
+* INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS.
+*----
+ IASM=0
+ DO 480 IGRP=1,NGRP
+ IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
+ UNGAR(:NUN,IRES,IGRP)=0.0
+ NORI=NOR(IRES,IGRP)
+ DO 475 INOR=1,NORI
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ IOF=(IASM+INOR-1)*NUN
+ CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
+*----
+* NORMALIZE THE MULTIBAND FLUX. THIS NORMALIZATION IS ONLY REQUIRED IF
+* THE MUTUAL SELF-SHIELDING MODEL IS USED.
+*----
+ IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.(ICORR.EQ.0))
+ 1 THEN
+ IOFF=(IASM+INOR-1)*NUN
+ AWPHI(0:NBNRS)=0.0
+ DO 430 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.GT.0) THEN
+ IND=IREX(IBM)
+ AWPHI(IND)=AWPHI(IND)+FUN(IOFF+KEYFLX(I))*VOL(I)/
+ 1 VOLMER(IND)
+ ENDIF
+ 430 CONTINUE
+ CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
+ DO 450 IND=0,NBNRS
+ TT=0.0
+ DO 440 J=1,NREG
+ IBM=MAT(J)
+ IF(IBM.GT.0) THEN
+ JND=IREX(IBM)
+ IOFS=(IASM+INOR-1)*NUN+KEYFLX(J)
+ TT=TT+PAV(IND,JND)*SUN(IOFS)*VOL(J)/VOLMER(JND)
+ ENDIF
+ 440 CONTINUE
+ AWPHI(IND)=TT/AWPHI(IND)
+ 450 CONTINUE
+ DO 460 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.GT.0) FUN(IOFF+KEYFLX(I))=FUN(IOFF+KEYFLX(I))*
+ 1 AWPHI(IREX(IBM))
+ 460 CONTINUE
+ ENDIF
+*
+ DO 470 I=1,NUN
+ IOF=(IASM+INOR-1)*NUN+I
+ UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF)
+ 470 CONTINUE
+ 475 CONTINUE
+ IASM=IASM+NORI
+ ENDIF
+ 480 CONTINUE
+ DEALLOCATE(SUN,FUN,NPSYS)
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(MATRIX)
+ DEALLOCATE(SIGX,PAV,SIGWS,WSLD,TOTPT,WEIGH,AWPHI,SIGG,SIGS0X,
+ 1 SIGTXS,XFLUX)
+ RETURN
+ END