diff options
Diffstat (limited to 'Dragon/src/BREERM.f')
| -rw-r--r-- | Dragon/src/BREERM.f | 523 |
1 files changed, 523 insertions, 0 deletions
diff --git a/Dragon/src/BREERM.f b/Dragon/src/BREERM.f new file mode 100644 index 0000000..b2d146b --- /dev/null +++ b/Dragon/src/BREERM.f @@ -0,0 +1,523 @@ +*DECK BREERM + SUBROUTINE BREERM(IPMAC1,NC,NG,NL,LX1,NMIX1,ITRIAL,IMIX,ICODE, + 1 ISPH,ZKEFF,B2,ENER,VOL1,FLX1,DC1,TOT1,CHI1,SIGF1,SCAT1,JXM,JXP, + 2 FHETXM,FHETXP,ADF1,NGET,ADFREF,IPRINT) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Implement the 1D ERM-NEM reflector model. +* +*Copyright: +* Copyright (C) 2021 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* IPMAC1 nodal macrolib. +* NC number of sn macrolibs. +* NG number of energy groups. +* NL Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic +* scattering in LAB). +* LX1 number of nodes in the reflector model. +* NMIX1 number of mixtures in the nodal calculation. +* ITRIAL type of expansion functions in the nodal calculation. +* (=1: polynomial; =2: hyperbolic). +* IMIX mix index of each node. +* ICODE physical albedo index on each side of the domain. +* ISPH SPH flag (=0: use discontinuity factors; =1: use SPH factors). +* ZKEFF effective multiplication factor. +* B2 buckling. +* ENER energy limits. +* VOL1 volumes. +* FLX1 averaged fluxes +* DC1 diffusion coefficients. +* TOT1 total cross sections. +* CHI1 fission spectra. +* SIGF1 nu*fission cross sections. +* SCAT1 scattering P0 cross sections. +* JXM left boundary currents. +* JXP right boundary currents. +* FHETXM left boundary fluxes. +* FHETXP right boundary fluxes. +* ADF1 assembly discontinuity factors from macrolib. +* NGET type of NGET normalization if discontinuity factors +* (=0: simple; =1: imposed ADF on fuel assembly; =2: recover +* fuel assembly ADF from input macrolib). +* ADFREF imposed ADF values on fuel assembly side. +* IPRINT edition flag. +* +*----------------------------------------------------------------------- +* + USE GANLIB +*---- +* SUBROUTINE ARGUMENTS +*---- + TYPE(C_PTR) IPMAC1 + INTEGER NC,NG,NL,LX1,NMIX1,ITRIAL(NG),IMIX(LX1),ICODE(2),ISPH, + 1 NGET,IPRINT + REAL ZKEFF(NC),B2(NC),ENER(NG+1),VOL1(NMIX1,NC),FLX1(NMIX1,NG,NC), + 1 DC1(NMIX1,NG,NC),TOT1(NMIX1,NG,NL,NC),CHI1(NMIX1,NG,NC), + 2 SIGF1(NMIX1,NG,NC),SCAT1(NMIX1,NG,NG,NL,NC),JXM(NMIX1,NG,NC), + 3 JXP(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC),FHETXP(NMIX1,NG,NL,NC), + 4 ADF1(NMIX1,NG,NC),ADFREF(NG) +*---- +* LOCAL VARIABLES +*---- + PARAMETER (NSTATE=40) + INTEGER ISTATE(NSTATE) + REAL SX(5),AA11(4,4),A11(5,5),Q(5) + CHARACTER(LEN=8) HADF(2) + LOGICAL LFISS + TYPE(C_PTR) JPMAC1,KPMAC1 +*---- +* ALLOCATABLE ARRAYS +*---- + INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS + REAL, ALLOCATABLE, DIMENSION(:) :: WORK,ETA,VOL + REAL, ALLOCATABLE, DIMENSION(:,:) :: AB,ALPHA,FLX,DC,TOT,CHI,SIGF, + 1 ADF,AFACTOR,BETA + REAL, ALLOCATABLE, DIMENSION(:,:,:) :: FDXM,FDXP,SCAT + REAL(KIND=8), ALLOCATABLE, DIMENSION(:) :: TAU,B,X + REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: WORK2 + REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:,:) :: FHOMM,FHOMP +*---- +* SCRATCH STORAGE ALLOCATION +*---- + ALLOCATE(ETA(NG),ALPHA(5,NG),FDXM(NMIX1,NG,NG),FDXP(NMIX1,NG,NG), + 1 AFACTOR(NG,NG),BETA(NG,NG),FHOMM(NC,NG,NMIX1),FHOMP(NC,NG,NMIX1)) + ALLOCATE(VOL(NMIX1),FLX(NMIX1,NG),DC(NMIX1,NG),TOT(NMIX1,NG), + 1 CHI(NMIX1,NG),SIGF(NMIX1,NG),SCAT(NMIX1,NG,NG),ADF(NMIX1,NG)) +*---- +* AVERAGE THE OUTPUT NODAL MACROLIB +*---- + VOL(:)=0.0 + FLX(:,:)=0.0 + DC(:,:)=0.0 + TOT(:,:)=0.0 + CHI(:,:)=0.0 + SIGF(:,:)=0.0 + SCAT(:,:,:)=0.0 + ADF(:,:)=0.0 + DO IC=1,NC + DO IBM=1,NMIX1 + VOL(IBM)=VOL(IBM)+VOL1(IBM,IC) + DO IGR=1,NG + FLX(IBM,IGR)=FLX(IBM,IGR)+FLX1(IBM,IGR,IC) + DC(IBM,IGR)=DC(IBM,IGR)+DC1(IBM,IGR,IC) + TOT(IBM,IGR)=TOT(IBM,IGR)+TOT1(IBM,IGR,1,IC) + CHI(IBM,IGR)=CHI(IBM,IGR)+CHI1(IBM,IGR,IC) + SIGF(IBM,IGR)=SIGF(IBM,IGR)+SIGF1(IBM,IGR,IC) + DO JGR=1,NG + SCAT(IBM,IGR,JGR)=SCAT(IBM,IGR,JGR)+SCAT1(IBM,IGR,JGR,1,IC) + ENDDO + ADF(IBM,IGR)=ADF(IBM,IGR)+ADF1(IBM,IGR,IC) + ENDDO + ENDDO + ENDDO + VOL(:)=VOL(:)/REAL(NC) + FLX(:,:)=FLX(:,:)/REAL(NC) + DC(:,:)=DC(:,:)/REAL(NC) + TOT(:,:)=TOT(:,:)/REAL(NC) + CHI(:,:)=CHI(:,:)/REAL(NC) + SIGF(:,:)=SIGF(:,:)/REAL(NC) + SCAT(:,:,:)=SCAT(:,:,:)/REAL(NC) + ADF(:,:)=ADF(:,:)/REAL(NC) +*---- +* LOOP OVER CASES +*---- + IF(ISPH.EQ.1) CALL XABORT('BREERM: SPH OPTION NOT IMPLEMENTED.') + J_FUEL=0 + DO IC=1,NC +*---- +* SET AND SOLVE NODAL SYSTEM +*---- + J_FUEL=0 + DO J=1,LX1 + IBM=IMIX(J) + IF(IBM.EQ.0) CYCLE + LFISS=.FALSE. + DO IGR=1,NG + IF(SIGF(IBM,IGR).GT.0.0) LFISS=.TRUE. + ENDDO + IF(LFISS) THEN + J_FUEL=J + ALLOCATE(AB(4*NG,4*NG+1)) + DO IGR=1,NG + DIFF=DC1(IBM,IGR,IC) + SIGR=TOT1(IBM,IGR,1,IC)+B2(IC)*DIFF-SCAT1(IBM,IGR,IGR,1,IC) + ETA(IGR)=VOL1(IBM,IC)*SQRT(SIGR/DIFF) + DO JGR=1,NG + IF(JGR.EQ.IGR) THEN + SIGT=SIGR-CHI1(IBM,IGR,IC)*SIGF1(IBM,IGR,IC)/ZKEFF(IC) + CALL BRESS1(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT, + 1 AA11) + ELSE + SIGT=-SCAT1(IBM,JGR,IGR,1,IC)-CHI1(IBM,JGR,IC)* + 1 SIGF1(IBM,IGR,IC)/ZKEFF(IC) + CALL BRESS2(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT, + 1 AA11) + ENDIF + DO K1=1,4 + DO K2=1,4 + AB((JGR-1)*4+K1,(IGR-1)*4+K2)=AA11(K1,K2) + ENDDO + ENDDO + ENDDO + SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/) + DO K1=1,4 + AB((IGR-1)*4+K1,4*NG+1)=SX(K1+1) + ENDDO + ENDDO + CALL ALSB(4*NG,1,AB,IER,4*NG) + IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(1).') + DO IGR=1,NG + ALPHA(1,IGR)=FLX1(IBM,IGR,IC) + DO I=1,4 + ALPHA(I+1,IGR)=AB((IGR-1)*4+I,4*NG+1) + ENDDO + ENDDO + DEALLOCATE(AB) + ELSE +* use averaged cross section values for the reflector + ALLOCATE(AB(5*NG,5*NG+1)) + DO IGR=1,NG + DIFF=DC(IBM,IGR) + SIGR=TOT(IBM,IGR)+B2(IC)*DIFF-SCAT(IBM,IGR,IGR) + ETA(IGR)=VOL(IBM)*SQRT(SIGR/DIFF) + DO JGR=1,NG + IF(JGR.EQ.IGR) THEN + SIGT=SIGR + CALL BRESS3(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11) + ELSE + SIGT=-SCAT(IBM,JGR,IGR) + CALL BRESS4(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11) + ENDIF + DO K1=1,5 + DO K2=1,5 + AB((JGR-1)*5+K1,(IGR-1)*5+K2)=A11(K1,K2) + ENDDO + ENDDO + ENDDO + SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/) + DO K1=1,5 + AB((IGR-1)*5+K1,5*NG+1)=SX(K1) + ENDDO + ENDDO + CALL ALSB(5*NG,1,AB,IER,5*NG) + IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(2).') + DO IGR=1,NG + DO I=1,5 + ALPHA(I,IGR)=AB((IGR-1)*5+I,5*NG+1) + ENDDO + ENDDO + DEALLOCATE(AB) + ENDIF + IF(IPRINT.GT.1) THEN + WRITE(6,'(/9H MIXTURE=,I5,6H CASE=,I3)') J,IC + WRITE(6,20) 'ALPHA',ALPHA(:5,:NG) + ENDIF +*---- +* COMPUTE NODAL SURFACE FLUXES +*---- + DO IGR=1,NG + IF (ITRIAL(IGR) == 1) THEN + Q(1) = ALPHA(3,IGR)/2. + FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1) + FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1) + ELSE + Q(1) = ETA(IGR)/2. + Q(2) = SINH(Q(1)) + Q(3) = ALPHA(3,IGR)/2. + Q(4) = ALPHA(4,IGR)*Q(2) + Q(5) = ALPHA(5,IGR)*(COSH(Q(1)) - (2*Q(2))/ETA(IGR)) + FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)-Q(4)+ + 1 Q(5) + FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)+Q(4)+ + 1 Q(5) + ENDIF + ENDDO + ENDDO + IF(IPRINT.GT.0) THEN + WRITE(6,'(/39H BREERM: NODAL SURFACE FLUXES FOR CASE=,I5)') IC + DO IBM=1,NMIX1 + WRITE(6,'(/9H MIXTURE=,I5)') IBM + WRITE(6,20) 'FHOMM',FHOMM(IC,:NG,IBM) + WRITE(6,20) 'FHOMP',FHOMP(IC,:NG,IBM) + ENDDO + ENDIF +*---- +* END OF LOOP OVER CASES +*---- + ENDDO +*---- +* COMPUTE DISCONTINUITY AND ALBEDO FACTORS +*---- + AFACTOR(:,:)=0.0 + DO IBM=1,NMIX1 + IF(NC.EQ.1) THEN + ! DF-NEM approach + FDXM(IBM,:,:)=0.0 + FDXP(IBM,:,:)=0.0 + DO IGR=1,NG + FDXM(IBM,IGR,IGR)=FHETXM(IBM,IGR,1,1)/REAL(FHOMM(1,IGR,IBM)) + FDXP(IBM,IGR,IGR)=FHETXP(IBM,IGR,1,1)/REAL(FHOMP(1,IGR,IBM)) + ENDDO + IF(IBM.EQ.NMIX1) THEN + DO IGR=1,NG + AFACTOR(IGR,IGR)=JXP(IBM,IGR,1)/REAL(FHOMP(1,IGR,IBM)) + ENDDO + ENDIF + ELSE IF(NC.LT.NG) THEN + CALL XABORT('BREERM: DEGENERATE SYSTEM') + ELSE IF(NC.EQ.NG) THEN + ! ERM-NEM approach: linear system resolution + ALLOCATE(WORK2(NC,2*NG)) + DO IGR=1,NG + DO IC=1,NC + WORK2(IC,IGR)=FHOMM(IC,IGR,IBM) + WORK2(IC,NG+IGR)=FHETXM(IBM,IGR,1,IC) + ENDDO + ENDDO + CALL ALSBD(NC,NG,WORK2,IER,NC) + IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(1).') + DO IGR=1,NG + DO IC=1,NC + FDXM(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR)) + ENDDO + ENDDO + DO IGR=1,NG + DO IC=1,NC + WORK2(IC,IGR)=FHOMP(IC,IGR,IBM) + WORK2(IC,NG+IGR)=FHETXP(IBM,IGR,1,IC) + ENDDO + ENDDO + CALL ALSBD(NC,NG,WORK2,IER,NC) + IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(2).') + DO IGR=1,NG + DO IC=1,NC + FDXP(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR)) + ENDDO + ENDDO + IF(IBM.EQ.NMIX1) THEN + DO IGR=1,NG + DO IC=1,NC + WORK2(IC,IGR)=FHOMP(IC,IGR,IBM) + WORK2(IC,NG+IGR)=JXP(IBM,IGR,IC) + ENDDO + ENDDO + CALL ALSBD(NC,NG,WORK2,IER,NC) + IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).') + DO IGR=1,NG + DO JGR=1,NG + AFACTOR(IGR,JGR)=REAL(WORK2(JGR,NG+IGR)) + ENDDO + ENDDO + ENDIF + DEALLOCATE(WORK2) + ELSE IF(NC.GE.NG) THEN + ! ERM-NEM approach: pseudo inversion + ALLOCATE(TAU(NG),B(NC),X(NG)) + CALL ALST2F(NC,NC,NG,FHOMM(1,1,IBM),TAU) + DO IGR=1,NG + B(:)=FHETXM(IBM,IGR,1,:) + CALL ALST2S(NC,NC,NG,FHOMM(1,1,IBM),TAU,B,X) + FDXM(IBM,IGR,:)=REAL(X(:)) + ENDDO + CALL ALST2F(NC,NC,NG,FHOMP(1,1,IBM),TAU) + DO IGR=1,NG + B(:)=FHETXP(IBM,IGR,1,:) + CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X) + FDXP(IBM,IGR,:)=REAL(X(:)) + ENDDO + IF(IBM.EQ.NMIX1) THEN + DO IGR=1,NG + B(:)=JXP(IBM,IGR,:) + CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X) + AFACTOR(IGR,:)=REAL(X(:)) + ENDDO + ENDIF + DEALLOCATE(X,B,TAU) + ENDIF + ENDDO + IF(IPRINT.GT.0) THEN + WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS BEFORE NORMALIZAT, + 1 3HION)') + DO IBM=1,NMIX1 + WRITE(6,'(/9H MIXTURE=,I5)') IBM + WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG) + WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG) + ENDDO + WRITE(6,'(/31H BREERM: DIFFUSION COEFFICIENTS)') + DO IBM=1,NMIX1 + WRITE(6,'(/9H MIXTURE=,I5)') IBM + WRITE(6,20) 'DIFF',DC(IBM,:NG) + ENDDO + ENDIF +*---- +* COMPUTE ALBEDOS +*---- + IF(ICODE(2).NE.0) THEN + BETA(:,:)=0.0 + DO IGR=1,NG + DO JGR=1,NG + BETA(IGR,JGR)=(1.0-2.0*AFACTOR(IGR,JGR))/(1.0+2.0* + 1 AFACTOR(IGR,JGR)) + ENDDO + ENDDO + IF(IPRINT.GT.0) THEN + WRITE(6,'(/16H BREERM: ALBEDOS)') + WRITE(6,20) 'BETA',BETA(:NG,:NG) + ENDIF + ENDIF +*---- +* NGET NORMALIZATION OF THE DISCONTINUITY FACTORS +*---- + ALLOCATE(WORK2(NG,2*NG)) + DO J=1,LX1-1 + IBM=IMIX(J) + IBMP=IMIX(J+1) + IF((IBM.EQ.0).OR.(IBMP.EQ.0)) CYCLE + DO IGR=1,NG + DO JGR=1,NG + WORK2(IGR,JGR)=FDXP(IBM,IGR,JGR) + WORK2(IGR,NG+JGR)=FDXM(IBMP,IGR,JGR) + ENDDO + ENDDO + CALL ALSBD(NG,NG,WORK2,IER,NG) + IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).') + DO IGR=1,NG + ! impose the adf on the fuel assembly side + IF((J.EQ.J_FUEL).AND.(NGET.EQ.1)) THEN + FNORM=ADFREF(IGR) + ELSE IF((J.EQ.J_FUEL).AND.(NGET.EQ.2)) THEN + FNORM=ADF(IBM,IGR) + ELSE + FNORM=FDXP(IBM,IGR,IGR) + ENDIF + FDXP(IBM,IGR,:)=0.0 + FDXP(IBM,IGR,IGR)=FNORM + DO JGR=1,NG + FDXM(IBMP,IGR,JGR)=REAL(WORK2(IGR,NG+JGR))*FNORM + ENDDO + ENDDO + ENDDO + DEALLOCATE(WORK2) + IF(J_FUEL.GT.0) THEN + DO J=J_FUEL,1,-1 + IBM=IMIX(J) + IF(IBM.EQ.0) CYCLE + DO IGR=1,NG + FNORM=FDXP(IBM,IGR,IGR)/FDXM(IBM,IGR,IGR) + DO JGR=1,NG + IF(J>1) THEN + IBMM=IMIX(J-1) + IF(IBMM.GT.0) FDXP(IBMM,IGR,JGR)=FDXP(IBMM,IGR,JGR)*FNORM + ENDIF + FDXM(IBM,IGR,JGR)=FDXM(IBM,IGR,JGR)*FNORM + ENDDO + ENDDO + ENDDO + ENDIF + DO J=J_FUEL+1,LX1 + IBM=IMIX(J) + IF(IBM.EQ.0) CYCLE + DO IGR=1,NG + FNORM=FDXM(IBM,IGR,IGR)/FDXP(IBM,IGR,IGR) + DO JGR=1,NG + IF(J<LX1) THEN + IBMP=IMIX(J+1) + IF(IBMP.GT.0) FDXM(IBMP,IGR,JGR)=FDXM(IBMP,IGR,JGR)*FNORM + ENDIF + FDXP(IBM,IGR,JGR)=FDXP(IBM,IGR,JGR)*FNORM + ENDDO + ENDDO + ENDDO + IF(IPRINT.GT.0) THEN + WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS AFTER NGET NORMAL, + 1 7HIZATION)') + DO IBM=1,NMIX1 + WRITE(6,'(/9H MIXTURE=,I5)') IBM + WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG) + WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG) + ENDDO + ENDIF +*---- +* SAVE THE OUTPUT NODAL MACROLIB +*---- + ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NMIX1*NG)) + ISTATE(:)=0 + ISTATE(1)=NG + ISTATE(2)=NMIX1 + ISTATE(3)=1 + IF(J_FUEL.GT.0) ISTATE(4)=1 + IF(ICODE(2).NE.0) ISTATE(8)=1 ! physical matrix albedo info + ISTATE(9)=1 ! diffusion coefficient information + IF(ISPH.EQ.0) ISTATE(12)=4 ! discontinuity factor information + CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE) + CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER) + CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,VOL) + CALL LCMPUT(IPMAC1,'B2 B1HOM',1,2,B2) + IF(ICODE(2).NE.0) CALL LCMPUT(IPMAC1,'ALBEDO',NG*NG,2,BETA) + IF(ISPH.EQ.0) THEN + CALL LCMSIX(IPMAC1,'ADF',1) + NTYPE=2 + HADF(1)='ERM_M' + HADF(2)='ERM_P' + CALL LCMPUT(IPMAC1,'NTYPE',1,1,NTYPE) + CALL LCMPTC(IPMAC1,'HADF',8,NTYPE,HADF) + CALL LCMPUT(IPMAC1,HADF(1),NMIX1*NG*NG,2,FDXM) + CALL LCMPUT(IPMAC1,HADF(2),NMIX1*NG*NG,2,FDXP) + CALL LCMSIX(IPMAC1,' ',2) + ENDIF + JPMAC1=LCMLID(IPMAC1,'GROUP',NG) + DO IGR=1,NG + KPMAC1=LCMDIL(JPMAC1,IGR) + DO IBM=1,NMIX1 + WORK(IBM)=VOL(IBM)*FLX(IBM,IGR) + ENDDO + CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK) + CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,TOT(:,IGR)) + CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DC(:,IGR)) + DO IBM=1,NMIX1 + WORK(IBM)=SCAT(IBM,IGR,IGR) + ENDDO + CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK) + CALL LCMPUT(KPMAC1,'CHI',NMIX1,2,CHI(:,IGR)) + CALL LCMPUT(KPMAC1,'NUSIGF',NMIX1,2,SIGF(:,IGR)) + IPOSDE=0 + DO IBM=1,NMIX1 + J2=IGR + J1=IGR + DO JGR=1,NG + IF(SCAT(IBM,IGR,JGR).NE.0.0) THEN + J2=MAX(J2,JGR) + J1=MIN(J1,JGR) + ENDIF + ENDDO + NJJ(IBM)=J2-J1+1 + IJJ(IBM)=J2 + IPOS(IBM)=IPOSDE+1 + DO JGR=J2,J1,-1 + IPOSDE=IPOSDE+1 + IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BREERM: SCAT OVERFLOW.') + WORK(IPOSDE)=SCAT(IBM,IGR,JGR) + ENDDO + ENDDO + CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK) + CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ) + CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ) + CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS) + ENDDO +*---- +* SCRATCH STORAGE DEALLOCATION +*---- + DEALLOCATE(WORK,IPOS,NJJ,IJJ,ADF,SCAT,SIGF,CHI,TOT,DC,FLX,VOL) + DEALLOCATE(FHOMP,FHOMM,BETA,AFACTOR,FDXP,FDXM,ALPHA,ETA) + RETURN + 20 FORMAT(1X,A9,1P,10E12.4,/(10X,10E12.4)) + END |
