diff options
| author | HEBERT Alain <alain.hebert@polymtl.ca> | 2025-12-28 15:55:41 -0500 |
|---|---|---|
| committer | HEBERT Alain <alain.hebert@polymtl.ca> | 2025-12-28 15:55:41 -0500 |
| commit | 754ef58dfd2880f95dd9765d035389f391917492 (patch) | |
| tree | d7056a5fcb559893c91df8d7533fa5fdb03d8480 /doc | |
| parent | ec64ba52445d2d06deba1216471ccf3d289c78a3 (diff) | |
| parent | 744b40856a035580b786378cae13d453edd26689 (diff) | |
Merge branch '19-depreciate-use-of-version-4-and-5-0-draglibs' into 'main'
Resolve "Depreciate use of Version 4 and 5.0 Draglibs"
See merge request dragon/5.1!40
Diffstat (limited to 'doc')
| -rw-r--r-- | doc/IGE351/SectDmicrolib.tex | 23 |
1 files changed, 16 insertions, 7 deletions
diff --git a/doc/IGE351/SectDmicrolib.tex b/doc/IGE351/SectDmicrolib.tex index 433c7b6..8ae7dd5 100644 --- a/doc/IGE351/SectDmicrolib.tex +++ b/doc/IGE351/SectDmicrolib.tex @@ -460,9 +460,7 @@ The following records and sub-directories will be found on the first level of a {$K_{r,i}^{\rm d}$ is the list of identifier for the depletion of an isotope.} \RealEnr {DEPLETE-ENER}{$M_{\mathrm{R}}\times N_{\mathrm{depl}}$}{Mev} - {$R_{r,i}^{\rm d}$ is the energy produced with each depletion reaction $r$ of the father isotope. If {\tt H-FACTOR} - information is available for an isotope $i$, $R_{r,i}^{\rm d}$ contains only decay energy contributions of lumped isotopes - produced by reaction $r$.} + {$R_{r,i}^{\rm d}$ is the energy produced by each depletion reaction $r$ of the father isotope. $r=1$ corresponds to radioactive decay} \RealEnr {DEPLETE-DECA}{$N_{\mathrm{depl}}$}{$10^{-8}$ s$^{-1}\ $} {Radioactive decay constants.} @@ -481,6 +479,13 @@ The following records and sub-directories will be found on the first level of a {$E_{k}^{\rm fiss}$ are the energy limits of fission yield macrogroups.} \end{DescriptionEnregistrement} +In all cases, the first component $R_{1,:}^{\rm d}$ contains the decay energy of the isotopes present in the burnup chain. The remaining components $r>1$ of the {\tt DEPLETE-ENER} record have different meaning, depending of the object containing the record: +\begin{description} +\item[{\tt RELEASE\_2003} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains $Q_x$ values for the isotopes present in the burnup chain. It may include corrections for lumped isotopes not explicitely represented in the burnup chain. +\item[{\tt RELEASE\_2025} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains only corrections for lumped isotopes not explicitely represented in the burnup chain. +\item[microlib:] The {\tt DEPLETE-ENER} components with $r>1$ are set to zero. +\end{description} + An isotope $\mathsf{NISO}_{i}$ defined in \Sect{microlibdirmain} is considered to be part of the depletion chain only if one can find a value of $1 \le j \le N_{\rm depl}$ such that $\mathsf{NISO}_{i}= \mathsf{NISOD}_{j}$. @@ -928,9 +933,6 @@ Table~\ref{tabl:tabiso3}. \begin{DescriptionEnregistrement}{Depletion-related information}{7.5cm} \label{tabl:tabiso3} \OptRealEnr - {MEVG\blank{8}}{$1$}{$N_d \ge 1$}{MeV} - {Energy in MeV produced by radiative capture. $N_d$ is defined in \Sect{microlibdir}.} -\OptRealEnr {MEVF\blank{8}}{$1$}{$N_d \ge 1$}{MeV} {Energy in MeV produced by fission.} \OptRealEnr @@ -1066,7 +1068,14 @@ section directory may be: \vskip 0.2cm -We can also use this isotopic directory to store time dependent cross sections in the form of a power series expansion: +The {\tt H-FACTOR} record has different meaning, depending of the object containing it: +\begin{description} +\item[{\tt RELEASE\_2003} draglib:] No {\tt H-FACTOR} record. +\item[{\tt RELEASE\_2025} draglib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values directly computed by NJOY for this specific isotope. +\item[microlib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values for this specific isotope. It may include corrections for lumped isotopes not explicitely represented in the associated burnup chain. +\end{description} + +This isotopic directory can also be used to store time dependent cross sections in the form of a power series expansion: \begin{equation} v_{k}^{g}(t)=\sum_{i=0}^{I} v_{k,i}^{g} t^{i} \label{eq:TimeSerie} |
