summaryrefslogtreecommitdiff
path: root/doc/IGE351
diff options
context:
space:
mode:
authorHEBERT Alain <alain.hebert@polymtl.ca>2025-12-28 15:55:41 -0500
committerHEBERT Alain <alain.hebert@polymtl.ca>2025-12-28 15:55:41 -0500
commit754ef58dfd2880f95dd9765d035389f391917492 (patch)
treed7056a5fcb559893c91df8d7533fa5fdb03d8480 /doc/IGE351
parentec64ba52445d2d06deba1216471ccf3d289c78a3 (diff)
parent744b40856a035580b786378cae13d453edd26689 (diff)
Merge branch '19-depreciate-use-of-version-4-and-5-0-draglibs' into 'main'
Resolve "Depreciate use of Version 4 and 5.0 Draglibs" See merge request dragon/5.1!40
Diffstat (limited to 'doc/IGE351')
-rw-r--r--doc/IGE351/SectDmicrolib.tex23
1 files changed, 16 insertions, 7 deletions
diff --git a/doc/IGE351/SectDmicrolib.tex b/doc/IGE351/SectDmicrolib.tex
index 433c7b6..8ae7dd5 100644
--- a/doc/IGE351/SectDmicrolib.tex
+++ b/doc/IGE351/SectDmicrolib.tex
@@ -460,9 +460,7 @@ The following records and sub-directories will be found on the first level of a
{$K_{r,i}^{\rm d}$ is the list of identifier for the depletion of an isotope.}
\RealEnr
{DEPLETE-ENER}{$M_{\mathrm{R}}\times N_{\mathrm{depl}}$}{Mev}
- {$R_{r,i}^{\rm d}$ is the energy produced with each depletion reaction $r$ of the father isotope. If {\tt H-FACTOR}
- information is available for an isotope $i$, $R_{r,i}^{\rm d}$ contains only decay energy contributions of lumped isotopes
- produced by reaction $r$.}
+ {$R_{r,i}^{\rm d}$ is the energy produced by each depletion reaction $r$ of the father isotope. $r=1$ corresponds to radioactive decay}
\RealEnr
{DEPLETE-DECA}{$N_{\mathrm{depl}}$}{$10^{-8}$ s$^{-1}\ $}
{Radioactive decay constants.}
@@ -481,6 +479,13 @@ The following records and sub-directories will be found on the first level of a
{$E_{k}^{\rm fiss}$ are the energy limits of fission yield macrogroups.}
\end{DescriptionEnregistrement}
+In all cases, the first component $R_{1,:}^{\rm d}$ contains the decay energy of the isotopes present in the burnup chain. The remaining components $r>1$ of the {\tt DEPLETE-ENER} record have different meaning, depending of the object containing the record:
+\begin{description}
+\item[{\tt RELEASE\_2003} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains $Q_x$ values for the isotopes present in the burnup chain. It may include corrections for lumped isotopes not explicitely represented in the burnup chain.
+\item[{\tt RELEASE\_2025} draglib:] The {\tt DEPLETE-ENER} components with $r>1$ contains only corrections for lumped isotopes not explicitely represented in the burnup chain.
+\item[microlib:] The {\tt DEPLETE-ENER} components with $r>1$ are set to zero.
+\end{description}
+
An isotope $\mathsf{NISO}_{i}$ defined in \Sect{microlibdirmain} is considered
to be part of the depletion chain only if one can find a value of $1 \le j \le N_{\rm depl}$
such that $\mathsf{NISO}_{i}= \mathsf{NISOD}_{j}$.
@@ -928,9 +933,6 @@ Table~\ref{tabl:tabiso3}.
\begin{DescriptionEnregistrement}{Depletion-related information}{7.5cm}
\label{tabl:tabiso3}
\OptRealEnr
- {MEVG\blank{8}}{$1$}{$N_d \ge 1$}{MeV}
- {Energy in MeV produced by radiative capture. $N_d$ is defined in \Sect{microlibdir}.}
-\OptRealEnr
{MEVF\blank{8}}{$1$}{$N_d \ge 1$}{MeV}
{Energy in MeV produced by fission.}
\OptRealEnr
@@ -1066,7 +1068,14 @@ section directory may be:
\vskip 0.2cm
-We can also use this isotopic directory to store time dependent cross sections in the form of a power series expansion:
+The {\tt H-FACTOR} record has different meaning, depending of the object containing it:
+\begin{description}
+\item[{\tt RELEASE\_2003} draglib:] No {\tt H-FACTOR} record.
+\item[{\tt RELEASE\_2025} draglib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values directly computed by NJOY for this specific isotope.
+\item[microlib:] The {\tt H-FACTOR} record contains $\sum_x Q_x \sigma_x$ or kerma values for this specific isotope. It may include corrections for lumped isotopes not explicitely represented in the associated burnup chain.
+\end{description}
+
+This isotopic directory can also be used to store time dependent cross sections in the form of a power series expansion:
\begin{equation}
v_{k}^{g}(t)=\sum_{i=0}^{I} v_{k,i}^{g} t^{i}
\label{eq:TimeSerie}