diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE351/SectDmccg.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE351/SectDmccg.tex')
| -rw-r--r-- | doc/IGE351/SectDmccg.tex | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/doc/IGE351/SectDmccg.tex b/doc/IGE351/SectDmccg.tex new file mode 100644 index 0000000..851dc51 --- /dev/null +++ b/doc/IGE351/SectDmccg.tex @@ -0,0 +1,264 @@ +\subsection{The \moc{mccgt} dependent records on a \dir{tracking} directory}\label{sect:mccgtrackingdir} + +When the \moc{MCCGT:} module is used ($\mathsf{CDOOR}$={\tt 'MCCG'}), an additional state vector +named {\tt MCCG-STATE} is set in \moc{EXCELT:} data structure. The components $\mathcal{M}^{t}_{i}$ +of {\tt MCCG-STATE} are: + +\begin{itemize} + +\item $\mathcal{M}^{t}_{1}$: ({\tt LCACT}) The polar quadrature type used with the method of characteristics +\begin{displaymath} +\mathcal{M}^{t}_{1} = \left\{ +\begin{array}{rl} + 0 & \textrm{Gauss-Legendre} \\ + 1 & \textrm{CACTUS type 1} \\ + 2 & \textrm{CACTUS type 2} \\ + 3 & \textrm{McDaniel} \\ + 4 & \textrm{McDaniel with $P_1$ constraint} \\ + 5 & \textrm{Gauss optimized.} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{2}$: ({\tt NMU}) The order of the polar quadrature. + +\item $\mathcal{M}^{t}_{3}$: ({\tt KRYL}) GMRES acceleration switch: +\begin{displaymath} +\mathcal{M}^{t}_{3} = \left\{ +\begin{array}{rl} + 0 & \textrm{free inner iterations} \\ + \ge 1 & \textrm{GMRES$(\mathcal{M}^{t}_{3})$ acceleration of inner iterations} \\ + \le 1 & \textrm{Bi-CGSTAB acceleration of inner iterations} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{4}$: ({\tt IDIFC}) Type of solution operator: +\begin{displaymath} +\mathcal{M}^{t}_{4} = \left\{ +\begin{array}{rl} + 0 & \textrm{transport flux solution selected} \\ + 1 & \textrm{CDD diffusion flux solution selected (no inner iterations are performed} \\ + & \textrm{in this case, only an ACA resolution is performed)} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{5}$: ({\tt NMAX}) The maximum number of elements in a single track. + +\item $\mathcal{M}^{t}_{6}$: ({\tt LMCU}) The dimension of the connection matrix {\tt MCU}. + +\item $\mathcal{M}^{t}_{7}$: ({\tt IACC}) ACA preconditioning switch: +\begin{displaymath} +\mathcal{M}^{t}_{7} = \left\{ +\begin{array}{rl} + 0 & \textrm{no ACA preconditioning} \\ + \ge 1 & \textrm{ACA preconditioning of inner/multigroup iterations} +\end{array} \right. +\end{displaymath} +If the number of inner iterations is set to 1, ACA is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{7}$ is the maximum number of iterations allowed to solve the ACA system. + +\item $\mathcal{M}^{t}_{8}$: ({\tt ISCR}) SCR preconditioning switch: +\begin{displaymath} +\mathcal{M}^{t}_{8} = \left\{ +\begin{array}{rl} + 0 & \textrm{no SCR preconditioning} \\ + \ge 1 & \textrm{SCR preconditioning of inner/multigroup iterations} +\end{array} \right. +\end{displaymath} +If the number of inner iterations is set to 1, SCR is used as a rebalancing technique for multigroup iterations and $\mathcal{M}^{t}_{8}$ is the maximum number of iterations allowed to solve the SCR system. + +\item $\mathcal{M}^{t}_{9}$: ({\tt LPS}) The dimension of the surface-to-region collision probabilities array if SCR is used. + +\item $\mathcal{M}^{t}_{10}$: ({\tt ILU}) The type of preconditioning for the resolution with BICGSTAB of the ACA corrective system if ACA is used: +\begin{displaymath} +\mathcal{M}^{t}_{10} = \left\{ +\begin{array}{rl} + 0 & \textrm{no preconditioning} \\ + 1 & \textrm{diagonal preconditioning} \\ + \ge 2 & \textrm{ILU0 preconditioning} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{11}$: ({\tt ILEXA}) Flag to force the usage of exact exponentials for preconditioner calculation: +\begin{displaymath} +\mathcal{M}^{t}_{11} = \left\{ +\begin{array}{rl} + 0 & \textrm{not forced} \\ + 1 & \textrm{forced} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{12}$: ({\tt ILEXF}) Flag to force the usage of exact exponentials for flux calculation: +\begin{displaymath} +\mathcal{M}^{t}_{12} = \left\{ +\begin{array}{rl} + 0 & \textrm{not forced} \\ + 1 & \textrm{forced} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{13}$: ({\tt MAXI}) Maximum number of inner iterations. + +\item $\mathcal{M}^{t}_{14}$: ({\tt LTMT}) Flag for the usage of a tracking merging technique while building the ACA matrices in order to obtain a two-step ACA acceleration: +\begin{displaymath} +\mathcal{M}^{t}_{14} = \left\{ +\begin{array}{rl} + 0 & \textrm{no tracking merging} \\ + 1 & \textrm{tracking merging} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{15}$: ({\tt STIS}) Flag for the flux integration strategy by the characteristics method: +\begin{displaymath} +\mathcal{M}^{t}_{15} = \left\{ +\begin{array}{rl} + 0 & \textrm{direct approach with asymptotical treatment} \\ + 1 & \textrm{``Source term isolation'' approach: optimized strategy with asymptotical treatment} \\ +-1 & \textrm{"MOCC/MCI"-like approach: optimized strategy without asymptotical treatment} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{16}$: ({\tt NPJJM}) Effective number of angular mode-to-mode self-collision probabilities to be calculated per group and region if $\mathcal{M}^{t}_{15}=1$ e.g. +\begin{center} +\begin{tabular}{|c|c|c|} + anisotropy & 2D & 3D \\ \hline +$P_0$ & 1 & 1 \\ +$P_1$ & 4 & 7 \\ +$P_2$ & 13 & 27 \\ +$P_3$ & 31 & 76 \\ \hline +\end{tabular} +\end{center} + +\item $\mathcal{M}^{t}_{17}$: ({\tt LMCU0}) Effective number of non-diagonal elements to store for the ILU0 decomposition for ACA preconditioning. + +\item $\mathcal{M}^{t}_{18}$: ({\tt IFORW}) Flag to set the solution type for the ACA and characteristics system: +\begin{displaymath} +\mathcal{M}^{t}_{18} = \left\{ +\begin{array}{rl} + 0 & \textrm{direct solution} \\ + 1 & \textrm{adjoint solution} +\end{array} \right. +\end{displaymath} + +\item $\mathcal{M}^{t}_{19}$: ({\tt NFUNL}) Number of spherical harmonics components used to expand the flux and the sources. + +\item $\mathcal{M}^{t}_{20}$: ({\tt NLIN}) Number of polynomial components used to expand the flux and the sources in space. + +\end{itemize} + +The following records will also be present on the main level of a \dir{tracking} +directory. + +%\rotatebox[origin=c]{90}{ +\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in +\dir{tracking}}{8.0cm} +\IntEnr + {MCCG-STATE\blank{2}}{$40$} + {Vector describing the various parameters associated with this data structure $\mathcal{M}^{t}_{i}$, + as defined in \Sect{mccgtrackingdir}.} +\RealEnr + {REAL-PARAM\blank{2}}{$4$}{} + {Real parameters $\mathcal{R}_{i}$ for the MCCG tracking.} +\RealEnr + {XMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{} + {Inverse of the polar quadrature sines.} +\RealEnr + {ZMU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{2}$}{} + {Cosines of the polar quadrature set.} +\RealEnr + {WZMU\$MCCG\blank{3}}{$\mathcal{M}^{t}_{2}$}{} + {Weights of the polar quadrature set.} +\OptIntEnr + {PI\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{S}^t_{15} > 0$} + {Permutation array for ACA according to $i_\textrm{old}=\Pi(i_\textrm{new})$. The dimension of this array is $$N_{\rm dim}=\cases{\mathcal{S}^t_{1}+\mathcal{S}^t_{5} &if $\mathcal{S}^t_9=0$; \cr + \mathcal{S}^t_1 &if $\mathcal{S}^t_9=1$. }$$} +\OptIntEnr + {INVPI\$MCCG\blank{2}}{$\mathcal{S}^t_{1}+\mathcal{S}^t_{5}$}{$\mathcal{S}^t_{15} > 0$} + {Inverse permutation array for ACA $i_\textrm{new}=\Pi(i_\textrm{old})$} +\IntEnr + {NZON\$MCCG\blank{3}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$} + {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface.} +\OptIntEnr + {NZONA\$MCCG\blank{2}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$} + {Index-number of the mixture type assigned to each volume and the albedo number assigned to each surface (-7 for void boundary conditions).} +\RealEnr + {V\$MCCG\blank{6}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{} + {Volumes and numerical surfaces.} +\OptRealEnr + {VA\$MCCG\blank{5}}{$\mathcal{S}^{t}_{1}+\mathcal{S}^{t}_{5}$}{$\mathcal{S}^t_{15} > 0$}{} + {Renumbered Volumes and numerical surfaces.} +\OptIntEnr + {KM\$MCCG\blank{5}}{$N_{\rm dim}$}{$\mathcal{M}^{t}_{7}>0$} + {Connection matrix for ACA.} +\OptIntEnr + {IM\$MCCG\blank{5}}{$N_{\rm dim}+1$}{$\mathcal{M}^{t}_{7}>0$} + {Connection matrix for ACA.} +\OptIntEnr + {MCU\$MCCG\blank{4}}{$\mathcal{M}^{t}_{6}$}{$\mathcal{M}^{t}_{7}>0$} + {Connection matrix for ACA.} +\OptIntEnr + {JU\$MCCG\blank{5}}{$N_{\rm dim}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{S}^t_{15} > 0$ \\ $\mathcal{M}^t_{3}\ge2$ \end{tabular}\right.$} + {Used for ILU0 decomposition in the preconditioning of ACA system.} +\OptIntEnr + {IS\$MCCG\blank{5}}{$\mathcal{S}^t_{5}$}{$\mathcal{M}^t_{1}>0$} + {Connection matrix for surface-to-volume probability in SCR.} +\OptIntEnr + {JS\$MCCG\blank{5}}{$\mathcal{M}^t_{7}$}{$\mathcal{M}^t_{1}>0$} + {Connection matrix for surface-to-volume probability in SCR.} +\IntEnr + {ISGNR\$MCCG\blank{2}}{$8(\mathcal{S}^{t}_{6})^2$} + {Signs for spherical harmonics on the 8 octant angular modes.} +\OptIntEnr + {KEYCUR\$MCCG\blank{1}}{$\mathcal{S}^t_5$}{$\mathcal{S}^t_{9}=1$} + {Index for outgoing currents at the domain boundaries.} +\IntEnr + {KEYFLX\$ANIS\blank{1}}{$\mathcal{S}^t_1,\mathcal{M}^t_{20},\mathcal{M}^t_{19}$} + {Location in unknown vector of averaged regional flux moments.} +\OptIntEnr + {KEYANI\$MCCG\blank{1}}{$(\mathcal{S}^{t}_{6})^2$}{$\mathcal{S}^t_9=1$} + {Index for currents.} +\OptIntEnr + {PJJIND\$MCCG\blank{1}}{$2\mathcal{M}^{t}_{16}$}{$\mathcal{M}^t_{15}=1$} + {Index of modes connection for non vanishing angular mode-to-mode self-collision probabilities} + + \OptIntEnr + {IM0\$MCCG\blank{4}}{$N_{\rm dim}+1$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$} + {Connection matrix for non-diagonal elements of ILU0-ACA.} +\OptIntEnr + {MCU0\$MCCG\blank{3}}{$\mathcal{M}^{t}_{17}$}{$\left\{\hskip -2mm\begin{tabular}{l} $\mathcal{M}^t_{7}>0$ \\ $\mathcal{M}^t_{3}=3$ \end{tabular}\right.$} + {Connection matrix for non-diagonal elements of ILU0-ACA.} + +\end{DescriptionEnregistrement}%} + +\noindent +with the real parameter $\mathcal{R}_{i}$, representing: +\begin{itemize} +\item $\mathcal{R}^{t}_{1}$: Convergence criterion on inner iterations. +\item $\mathcal{R}^{t}_{2}$: Step characteristics selection criterion: +\begin{displaymath} +\mathcal{R}^{t}_{2} = \left\{ +\begin{array}{rl} + 0.0 & \textrm{step characteristics scheme} \\ +>0.0 & \textrm{diamond differencing scheme.} +\end{array} \right. +\end{displaymath} +\item $\mathcal{R}^{t}_{3}$: Track spacing in cm for 3D prismatic tracking. +\item $\mathcal{R}^{t}_{4}$: Tracking symmetry factor for maximum track length calculation during the calculation of a 3D prismatic tracking. +\end{itemize} + +The following records will also be present in the \namedir{PROJECTION} directory of a \dir{tracking} +directory when a prismatic tracking is considered. + +\begin{DescriptionEnregistrement}{The \moc{MCCGT:} records in +\namedir{PROJECTION}}{8.0cm} +\OptRealEnr + {ZCOORD\blank{6}}{$\mathcal{M}^{t}_{18}+1$}{$\mathcal{S}^{t}_{39} > 0$}{cm} + {The $z-$directed mesh position} +\OptIntEnr + {IND2T3\blank{6}}{$N_{ind}$}{$\mathcal{S}^{t}_{39} > 0$} + {Volume and surfaces index for a 3D prismatic geometry. Its size is $N_{ind}=(N_{2D}+1)(\mathcal{M}^{t}_{18}+2)$ where $N_{2D}$ is the number of volumes and surfaces in the initial 2D tracking} +\OptDbleEnr + {VNORF\blank{7}}{$N_{nor}$}{$\mathcal{S}^{t}_{39} > 0$}{} + {Angular dependent normalization factors for a 3D prismatic extended tracking. Its size is $N_{nor}= 2 \mathcal{S}^{t}_{1} \mathcal{M}^{t}_{2} N_{\textrm{angl}}$ where $N_{\textrm{angl}}$ is the number of tracking angles in the initial 2D tracking} + +\end{DescriptionEnregistrement} + +\eject |
