diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE351/SectDfluxunk.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE351/SectDfluxunk.tex')
| -rw-r--r-- | doc/IGE351/SectDfluxunk.tex | 291 |
1 files changed, 291 insertions, 0 deletions
diff --git a/doc/IGE351/SectDfluxunk.tex b/doc/IGE351/SectDfluxunk.tex new file mode 100644 index 0000000..c0693e7 --- /dev/null +++ b/doc/IGE351/SectDfluxunk.tex @@ -0,0 +1,291 @@ +\section{Contents of a +\dir{fluxunk} directory}\label{sect:fluxunkdir} + +This directory contains the main flux calculations results, including the multigroup flux, the +eigenvalue for the problem and the diffusion coefficients when computed. The following types of +equations can be solved: +\begin{enumerate} +\item Fixed source problem +\begin{equation} +\bf{A} \ \vec\Phi = \vec S +\label{eq:flux1} +\end{equation} +\noindent where $\bf{A}$ is the coefficient matrix, $\vec S$ is the source vector and +$\vec\Phi$ is the unknown vector. + +\item Direct eigenvalue problem +\begin{equation} +\bf{A} \ \vec\Phi_\alpha + {1 \over K_{{\rm eff},\alpha}} \ \bf{B} \ \vec\Phi_\alpha = \vec 0 +\label{eq:flux2} +\end{equation} +\noindent where $\bf{B}$ is the second coefficient matrix and where (${1 \over K_{{\rm eff},\alpha}}$ +,$\vec\Phi_\alpha$) is the eigensolution corresponding to the $\alpha$--th eigenvalue +or harmonic mode. Generally, only the eigensolution corresponding to the maximum value of $K_{{\rm eff},\alpha}$ is found (the fundamental mode). + +\item Adjoint eigenvalue problem +\begin{equation} +\bf{A}^\top \ \vec\Phi_\alpha^* + {1 \over K_{{\rm eff},\alpha}} \ \bf{B}^\top \ \vec\Phi_\alpha^* = \vec 0 +\label{eq:flux3} +\end{equation} +\noindent where matrices $\bf{A}$ and $\bf{B}$ are transposed. + +\item Fixed source direct eigenvalue equation (direct GPT) +\begin{equation} +\bf{A} \ \vec\Gamma_\alpha + {1 \over K_{{\rm eff},\alpha}} \ \bf{B} \ \vec\Gamma_\alpha = \vec S +\ \ \ \ {\rm where} \ \ \ \ \left<\Phi_\alpha^*, \ \vec S \right>=0 +\label{eq:flux4} +\end{equation} +\noindent where the direct source vector $\vec S$ is orthogonal to the adjoint flux. + +\item Fixed source adjoint eigenvalue equation (adjoint GPT) +\begin{equation} +\bf{A}^\top \ \vec\Gamma_\alpha^* + {1 \over K_{{\rm eff},\alpha}} \ \bf{B}^\top \ \vec\Gamma_\alpha^* = \vec S^* +\ \ \ \ {\rm where} \ \ \ \ \left<\Phi_\alpha, \ \vec S^* \right>=0 +\label{eq:flux5} +\end{equation} +\noindent where the adjoint source vector $\vec S^*$ is orthogonal to the direct flux. + +\end{enumerate} + +\subsection{State vector content for the \dir{fluxunk} data structure}\label{sect:fluxunkstate} + +The dimensioning parameters for this data structure, which are stored in the state vector +$\mathcal{S}^{f}_{i}$, represent: + +\begin{itemize} + +\item The number of energy groups $N_{G}=\mathcal{S}^{f}_{1}$ + +\item The number of unknowns per energy group $N_{U}=\mathcal{S}^{f}_{2}$ + +\item The type of equation considered $ I_{e} = \mathcal{S}^{f}_{3} = \alpha_1 + 10 \ \alpha_2 + 100 \ \alpha_3 + 1000 \ \alpha_4 $ where +\vskip -0.45cm + +\begin{eqnarray} +\nonumber \alpha_1 &=& 0/1\textrm{:} \ \ \textrm{Fixed source (\Eq{flux1}) or \keff{} (\Eq{flux2}) direct eigenvalue equation} \\ +\nonumber &~&\textrm{absent/present} \\ +\nonumber \alpha_2 &=& 0/1\textrm{:} \ \ \textrm{Adjoint eigenvalue equation (\Eq{flux3}) absent/present} \\ +\nonumber \alpha_3 &=& 0/1\textrm{:} \ \ \textrm{Direct fixed source eigenvalue equation -- or GPT equation (\Eq{flux4})} \\ +\nonumber &~&\textrm{absent/present} \\ +\nonumber \alpha_4 &=& 0/1\textrm{:} \ \ \textrm{Adjoint fixed source eigenvalue equation -- or GPT equation (\Eq{flux5})} \\ +\nonumber &~&\textrm{absent/present} +\end{eqnarray} + +\item The number of harmonics considered $N_{h}=\mathcal{S}^{f}_{4}$ where + +\begin{displaymath} +N_{h} = \left\{ +\begin{array}{rl} + 0 & \textrm{the harmonic calculation is not enabled} \\ + \ge 1 & \textrm{the harmonic calculation is enabled. $N_{h}$ is the number of harmonics.} \\ +\end{array} \right. +\end{displaymath} + +\item The number of specific GPT equations considered $N_{\rm gpt}=\mathcal{S}^{f}_{5}$ where + +\begin{displaymath} +N_{\rm gpt} = \left\{ +\begin{array}{rl} + 0 & \textrm{the GPT calculation is not enabled} \\ + \ge 1 & \textrm{the GPT calculation is enabled. $N_{\rm gpt}$ is the number of specific GPT} \\ + & \textrm{equations.} \\ +\end{array} \right. +\end{displaymath} + +\item The type of $B_n$ solution considered $I_{s}=\mathcal{S}^{f}_{6}$ where + +\begin{displaymath} +I_{s} = \left\{ +\begin{array}{rl} +-2 & \textrm{1D Fourier analysis, fixed source problem, no eigenvalue}\\ +-1 & \textrm{No flux calculation, fluxes taken from input file}\\ + 0 & \textrm{Fixed source problem, no eigenvalue} \\ + 1 & \textrm{fixed source eigenvalue problem (GPT type) with fission} \\ + 2 & \textrm{\keff{} eigenvalue problem with fission and without leakage} \\ + 3 & \textrm{\keff{} eigenvalue problem with fission and leakage } \\ + 4 & \textrm{Buckling eigenvalue problem with fission and leakage} \\ + 5 & \textrm{Buckling eigenvalue problem without fission but with leakage} +\end{array} \right. +\end{displaymath} + +\item The type of leakage model $I_{l}=\mathcal{S}^{f}_{7}$ where + +\begin{displaymath} +I_{l} = \left\{ +\begin{array}{rl} + 0 & \textrm{No leakage model} \\ + 1 & \textrm{Homogeneous \moc{PNLR} calculation} \\ + 2 & \textrm{Homogeneous \moc{PNL} calculation} \\ + 3 & \textrm{Homogeneous \moc{SIGS} calculation} \\ + 4 & \textrm{Homogeneous \moc{ALSB} calculation} \\ + 5 & \textrm{Leakage with isotropic streaming effects -- Todorova simplified model} \\ + 6 & \textrm{Leakage with isotropic streaming effects -- ECCO model} \\ +17 & \textrm{Leakage with anisotropic streaming effects -- imposed buckling} \\ +27 & \textrm{Leakage with anisotropic streaming effects -- X-Buckling search} \\ +37 & \textrm{Leakage with anisotropic streaming effects -- Y-Buckling search} \\ +47 & \textrm{Leakage with anisotropic streaming effects -- Z-Buckling search} \\ +57 & \textrm{Leakage with anisotropic streaming effects -- radial Buckling search} \\ +67 & \textrm{Leakage with anisotropic streaming effects -- total Buckling search} \\ +\end{array} \right. +\end{displaymath} + +\item Number of free iteration per variational acceleration cycle $N_{f}=\mathcal{S}^{f}_{8}$ + +\item Number of accelerated iteration per variational acceleration cycle $N_{a}=\mathcal{S}^{f}_{9}$ + +\item Thermal rebalancing option $I_{r}=\mathcal{S}^{f}_{10}$ where + +\begin{displaymath} +I_{r} = \left\{ +\begin{array}{rl} + 0 & \textrm{No thermal iteration rebalancing} \\ + 1 & \textrm{Thermal iteration rebalancing activated} \\ +\end{array} \right. +\end{displaymath} + +\item Maximum number of thermal (up-scattering) iterations $M_{\rm in}=\mathcal{S}^{f}_{11}$ + +\item Maximum number of outer iterations $M_{\rm out}=\mathcal{S}^{f}_{12}$ + +\item Initial number of ADI iterations in Trivac $M_{\rm adi}=\mathcal{S}^{f}_{13}$ + +\item Block size of the Arnoldi Hessenberg matrix with the implicit restarted Arnoldi method (IRAM) ($=0$ if the symmetrical variational acceleration technique (SVAT) is used) $N_{\rm blsz}=\mathcal{S}^{f}_{14}$ + +\item Number of iterations before restarting with the GMRES(m) acceleration method for solving the ADI-preconditionned linear systems in Trivac ($=0$ if $M_{\rm adi}$ free iterations are used) $N_{\rm gmr1}=\mathcal{S}^{f}_{15}$ + +\item Number of iterations before restarting with the GMRES(m) acceleration method for solving a multigroup fixed-source problem ($=0$ if the variational acceleration technique is used) $N_{\rm gmr2}=\mathcal{S}^{f}_{16}$ + +\item Number of material mixtures $N_m=\mathcal{S}^{f}_{17}$ + +\item Number of leakage zones $N_{\rm leak}=\mathcal{S}^{f}_{18}$. Set to zero if no leakage zones are defined. + +\end{itemize} + +\subsection{The main \dir{fluxunk} directory}\label{sect:fluxunkdirmain} + +On its first level, the +following records and sub-directories will be found in the \dir{fluxunk} directory: + +\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{fluxunk}}{8.0cm} +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the data structure ($\mathsf{SIGNA}=${\tt L\_FLUX\blank{6}})} +\IntEnr + {STATE-VECTOR}{$40$} + {Vector describing the various parameters associated with this data structure $\mathcal{S}^{f}_{i}$, + as defined in \Sect{fluxunkstate}.} +\CharEnr + {TRACK-TYPE\blank{2}}{$*12$} + {Type of tracking considered ($\mathsf{CDOOR}$). Allowed values are: + {\tt 'EXCELL'}, {\tt 'SYBIL'}, {\tt 'MCCG'}, {\tt 'SN'}, {\tt 'BIVAC'} and {\tt 'TRIVAC'}.} +\CharEnr + {OPTION\blank{6}}{$*4$} + {Type of leakage coefficients ({\tt 'LKRD'}: recover leakage coefficients in Macrolib; {\tt 'RHS'}: recover + leakage coefficients in RHS flux object; {\tt 'B0'}: $B_0$; {\tt 'P0'}: $P_0$; {\tt 'B1'}: $B_1$; {\tt 'P1'}: + $P_1$; {\tt 'B0TR'}: $B_0$ with transport correction; {\tt 'P0TR'}: $P_0$ with transport correction).} +\RealEnr + {EPS-CONVERGE}{$5$}{} + {Convergence parameters $\Delta_i^\epsilon$} +\IntEnr + {KEYFLX\blank{6}}{$\mathcal{S}^{t}_{1}$} + {Location in unknown vector of averaged regional flux $I_{r}$} +\OptRealEnr + {K-EFFECTIVE\blank{1}}{$1$}{$\mathcal{S}^{f}_{6}\ge 1$}{} + {Computed or imposed effective multiplication factor for direct eigenvalue problem, + corresponding to the fundamental mode} +\OptRealEnr + {AK-EFFECTIVE}{$1$}{${\mathcal{S}^{f}_{3}\over 10} \bmod 10 = 1$}{} + {Computed effective multiplication factor for adjoint eigenvalue problem, + corresponding to the fundamental mode. + The theoretical value is equal + to {\tt 'K-EFFECTIVE'} but difference may occurs for numerical reasons.} +\OptRealEnr + {K-INFINITY\blank{2}}{$1$}{$\mathcal{S}^{f}_{6}\ge 2$}{} + {Computed infinite multiplication constant for eigenvalue problem, + corresponding to the fundamental mode} +\OptRealEnr + {B2\blank{2}B1HOM\blank{3}}{$1$}{$\mathcal{S}^{f}_{6}\ge 1$}{cm$^{-2}$} + {Homogeneous buckling $B^{2}$, + corresponding to the fundamental mode} +\OptRealEnr + {SPEC-RADIUS\blank{1}}{$1$}{$\mathcal{S}^{f}_{6}= -2$}{cm} + {Spectral radius} +\OptRealEnr + {DIFFHET\blank{5}}{$N_{\rm leak}\times G$}{$\mathcal{S}^{f}_{18}\ge 1$}{cm} + {Multigroup leakage coefficients in each leakage zone and energy group $D_l^g$} +\OptIntEnr + {IMERGE-LEAK\blank{1}}{$N_m$}{$\mathcal{S}^{f}_{18}\ge 1$} + {Leakage zone index assigned to each material mixture $L_m^g$} +\OptRealEnr + {B2\blank{2}HETE\blank{4}}{$3$}{$\mathcal{S}^{f}_{7} \ge 6$}{cm$^{-2}$} + {Directional buckling components $B^{2}_{i}$, + corresponding to the fundamental mode} +\OptRealEnr + {GAMMA\blank{7}}{$G$}{$\mathcal{S}^{f}_{7}\ge 5$}{} + {Gamma factors used with $B_n$--type streaming models.} +\DirlEnr + {FLUX\blank{8}}{$\mathcal{S}^{f}_{1}$} + {List of real arrays. Each component of this list is a real array of dimension $\mathcal{S}^{f}_{2}$ + containing the solution of a fixed source (\Eq{flux1}) or of a direct eigenvalue (\Eq{flux2}) equation, + corresponding to the fundamental mode.} +\DirlEnr + {SOUR\blank{8}}{$\mathcal{S}^{f}_{1}$} + {List of real arrays. Each component of this list is a real array of dimension $\mathcal{S}^{f}_{2}$ + containing the RHS source distributions corresponding to the {\tt FLUX} records.} +\OptDirlEnr + {AFLUX\blank{7}}{$\mathcal{S}^{f}_{1}$}{${\mathcal{S}^{f}_{3}\over 10} \bmod 10 = 1$} + {List of real arrays. Each component of this list is a real array of dimension $\mathcal{S}^{f}_{2}$ + containing the solution of an adjoint eigenvalue (\Eq{flux3}) equation, + corresponding to the fundamental mode.} +\OptDirlEnr + {MODE\blank{8}}{$\mathcal{S}^{f}_{4}$}{$\mathcal{S}^{f}_{4}\ge 1$} + {List of {\sl harmonic mode} sub-directories. Each component of this list follows + the specification presented in \Sect{mode_spec}.} +\OptDirlEnr + {DFLUX\blank{7}}{$\mathcal{S}^{f}_{5}$}{$\mathcal{S}^{f}_{3}=100$} + {List of direct (explicit) GPT sub-directories. Each component of this list is a multigroup list of + dimension $\mathcal{S}^{f}_{1}$. Each component of the multigroup list is a real array of dimension + $\mathcal{S}^{f}_{2}$ containing the solution of a fixed source direct eigenvalue equation similar to \Eq{flux4}.} +\OptDirlEnr + {ADFLUX\blank{6}}{$\mathcal{S}^{f}_{5}$}{$\mathcal{S}^{f}_{3}=1000$} + {List of adjoint (implicit) GPT sub-directories. Each component of this list is a multigroup list of + dimension $\mathcal{S}^{f}_{1}$. Each component of the multigroup list is a real array of dimension + $\mathcal{S}^{f}_{2}$ containing the solution of a fixed source adjoint eigenvalue equation similar to \Eq{flux5}.} +\OptDirlEnr + {DRIFT\blank{7}}{$\mathcal{S}^{f}_{1}$}{$\mathcal{S}^{t}_{12}=6$} + {Drift coefficients used in nodal correction iterations. Each component of the multigroup list is a real array of dimension + $6\times \mathcal{S}^{t}_{1}$.} +\end{DescriptionEnregistrement} + +The convergence parameters $\Delta_i^\epsilon$ represent: +\begin{itemize} +\item $\Delta_1^\epsilon$ is the thermal (up-scattering) iteration flux convergence parameter +\item $\Delta_2^\epsilon$ is the outer iteration eigenvalue convergence parameter +\item $\Delta_3^\epsilon$ is the outer iteration flux convergence parameter +\item $\Delta_4^\epsilon$ is the GMRES convergence parameter used at inner iteration +\item $\Delta_5^\epsilon$ is the relaxation factor of the flux used in multiphysics applications. $\Delta_5^\epsilon=1$ is equivalent to no +relaxation. +\end{itemize} +\goodbreak + +\subsection{The harmonic mode sub-directories in \dir{fluxunk}}\label{sect:mode_spec} + +Each component of the list named {\tt 'MODE'} contains the information relative to a specific +harmonic mode. + +\begin{DescriptionEnregistrement}{Component of the harmonic mode directory}{7.5cm} +\RealEnr + {K-EFFECTIVE\blank{1}}{$1$}{} + {Computed effective multiplication factor for eigenvalue problem, + corresponding to the $\alpha$--th mode} +\DirlEnr + {FLUX\blank{8}}{$\mathcal{S}^{f}_{1}$} + {List of real arrays. Each component of this list is a real array of dimension $\mathcal{S}^{f}_{2}$ + containing the solution of the $\alpha$--th mode of a direct eigenvalue (\Eq{flux2}) equation.} +\OptDirlEnr + {AFLUX\blank{7}}{$\mathcal{S}^{f}_{1}$}{${\mathcal{S}^{f}_{3}\over 10} \bmod 10 = 1$} + {List of real arrays. Each component of this list is a real array of dimension $\mathcal{S}^{f}_{2}$ + containing the solution of the $\alpha$--th mode of an adjoint eigenvalue (\Eq{flux3}) equation.} +\end{DescriptionEnregistrement} + +\eject |
