summaryrefslogtreecommitdiff
path: root/doc/IGE351/SectDcpo.tex
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE351/SectDcpo.tex
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE351/SectDcpo.tex')
-rw-r--r--doc/IGE351/SectDcpo.tex1
1 files changed, 1 insertions, 0 deletions
diff --git a/doc/IGE351/SectDcpo.tex b/doc/IGE351/SectDcpo.tex
new file mode 100644
index 0000000..355b941
--- /dev/null
+++ b/doc/IGE351/SectDcpo.tex
@@ -0,0 +1 @@
+\section{Contents of a \dir{CPO} directory}\label{sect:cpodir} This directory contains a burnup dependent hierarchical reactor database. For the purpose of illustration we will assume that the \moc{CPO:} module is executed using the following data: \begin{quote} \begin{verbatim} CpoResults := CPO: EdiResults EvoResults :: BURNUP REF-CASE EXTRACT ALL NAME MIXTH ; \end{verbatim} \end{quote} where \moc{EdiResults} is a \dds{edition} data structure that contains 2 homogeneous mixtures, evaluated and saved at 2 time steps, \moc{EvoResults} is a \dds{burnup} data structure containing information for the successive burnup calculations used to generate \moc{EdiResults} and finally \moc{CpoResults} is the final \dds{cpo} data structure that contains the resulting reactor database. \subsection{The main directory}\label{sect:cpodirmain} The following records and sub-directories will be found in the \dir{CPO} directory: \begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{CPO}}{8.0cm} \CharEnr {SIGNATURE\blank{3}}{$*12$} {parameter $\mathsf{SIGNA}$ containing the signature of the data structure} \IntEnr {STATE-VECTOR}{$40$} {array $\mathcal{S}^{c}_{i}$ containing various parameters that are required to describe this data structure} \DirVar {\listedir{MIXDIR}} {list of sub-directories that contain homogeneous mixture information} \end{DescriptionEnregistrement} The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_COMPO |. The array $\mathcal{S}^{c}_{i}$ contains the following information: \begin{itemize} \item $\mathcal{S}^{c}_{1}=N_{H}$ contains the total number of homogeneous mixtures saved. \item $\mathcal{S}^{c}_{2}=M_{G}$ contains the maximum number of groups considered. \item $\mathcal{S}^{c}_{3}=M_{I}$ contains the maximum number of isotopes. \item $\mathcal{S}^{c}_{4}=M_{L}$ contains the maximum order for the scattering anisotropy. \item $\mathcal{S}^{c}_{5}=M_{B}$ contains the maximum number of burnup steps per mixtures. \end{itemize} The list of directory \listedir{MIXDIR} named $\mathsf{MIXDIR}$ will be composed according to the following laws. The first eight character ($\mathsf{MIXDIR}$\verb*|(1:8)|) will be identical to the first 8 character of the user data following the keyword \moc{NAME} in the \moc{CPO:} module (here \verb*|MIXTH |. If the keyword \moc{NAME} is not used then $\mathsf{MIXDIR}$\verb*|(1:8)| takes the value \verb*|COMPO |. The last four characters ($\mathsf{MIXDIR}$\verb*|(9:12)|) represent the various homogeneous mixture number saved on the \dds{edition} data structure. For the case where $N_{H}$ such mixtures were produces the following FORTRAN instructions are used to create the last four character of each of the directory names: \begin{quote} \verb|WRITE(|$\mathsf{MIXDIR}$\verb|(9:12),'(I4)') | $J$ \end{quote} for $1\leq J \leq N_{H}$. For the example given above ($N_{H}=2$), two such directories will be generated, namely \begin{DescriptionEnregistrement}{Example of homogeneous mixture directories}{8.0cm} \DirEnr {MIXTH\blank{6}1}{is the sub-directory that contains the information associated with homogeneous mixture 1} \DirEnr {MIXTH\blank{6}2}{is the sub-directory that contains the information associated with homogeneous mixture 2} \end{DescriptionEnregistrement} \subsection{The mixture sub-directory}\label{sect:cpodirmixture} Each mixture directory contains the following records and sub-directories will be found: \begin{DescriptionEnregistrement}{Contents of a mixture sub-directory in \dir{CPO}}{7.0cm} \CharEnr {TITLE\blank{7}}{$*72$} {parameter $\mathsf{T}$ containing the title of the run which produced this mixture} \IntEnr {PARAM\blank{7}}{$4$} {array $\mathcal{P}^{\text{cpo}}_{i}$ containing the various parameters associated with this mixture} \RealEnr {VOLUME\blank{6}}{$1$}{cm$^{3}$} {parameter $V_{i}$ containing the volume of the region associated this homogeneous mixture in the \dds{edition} data structure} \RealEnr {ENERGY\blank{6}}{$G+1$}{eV} {array $E_{g}$ containing the energy groups limits} \RealEnr {BURNUP\blank{6}}{$\mathcal{P}^{\text{cpo}}_{4}$}{MW d T$^{-1}$} {array $B_{k}$ containing the burnup steps} \RealEnr {N/KB\blank{8}}{$\mathcal{P}^{\text{cpo}}_{4}$}{Kb$^{-1}$} {array $w_{k}$ containing the fuel irradiation for the different burnup steps} \CharEnr {ISOTOPESNAME}{$(\mathcal{P}^{\text{cpo}}_{2})*12$} {array $\mathsf{ISO}_{i}$ containing the name of the various isotopes saved for this mixture} \DirVar {\listedir{BRNDIR}} {list of sub-directories that contain the burnup dependent cross sections associated with this homogeneous mixture} \end{DescriptionEnregistrement} The following information is stored in $\mathcal{P}^{\text{cpo}}$: \begin{itemize} \item $\mathcal{P}^{\text{cpo}}_{1}=G$ contains the number of groups for this homogeneous mixture. \item $\mathcal{P}^{\text{cpo}}_{2}=N_{I}$ contains the number of isotopes in this mixture. \item $\mathcal{P}^{\text{cpo}}_{3}=N_{L}$ contains the order of the scattering anisotropy for this mixture. \item $\mathcal{P}^{\text{cpo}}_{4}=N_{B}$ contains the number of burnup steps for this mixture. \end{itemize} The list of directory \listedir{BRNDIR} names $\mathsf{BRNDIR}$ will be composed according to the following FORTRAN instructions: \begin{quote} \verb|WRITE(|$\mathsf{BRNDIR}$\verb|,'(A8,I4)') 'BURN ',| $J$ \end{quote} for $1\leq J \leq N_{B}$. For the example given above ($N_{B}=2$), two such directories will be generated, namely \begin{DescriptionEnregistrement}{Example of homogeneous mixture directories}{8.0cm} \DirEnr {BURN\blank{7}1}{is the sub-directory that contains the information associated with burnup step 1} \DirEnr {BURN\blank{7}2}{is the sub-directory associated with burnup step 2} \end{DescriptionEnregistrement} \subsection{The burnup sub-directory}\label{sect:cpodirburnup} A burnup sub-directory contains the following records and sub-directories: \begin{DescriptionEnregistrement}{Contents of a burnup sub-directory in \dir{CPO}}{7.0cm} \RealEnr {ISOTOPESDENS}{$N_{I}$}{(cm b)$^{-1}$} {array $\rho_{i}$ containing the density of each isotopes} \RealEnr {ISOTOPES-EFJ}{$N_{I}$}{J} {array $H_{i}$ containing the energy produced per fission for each isotope} \RealEnr {FLUX-INTG\blank{3}}{$G$}{cm s$^{-1}$} {array $\Phi_{m}^{g}$ containing the integrated flux} \RealEnr {OVERV\blank{7}}{$G$}{cm$^{-1}$s} {array $1/v_{m}^{g}$ containing the inverse of the average neutron velocity} \RealEnr {FLUXDISAFACT}{$G$}{} {array $F_{g}$ containing the ratio of the flux in the fuel to the flux in the cell} \DirVar {\listedir{ISOTOPE}} {list of $N_{I}$ sub-directories that contain the isotopic microscopic cross section for this burnup step} \end{DescriptionEnregistrement} The list of directory names is specified by $\mathsf{ISODIR}=\mathsf{ISO}_{i}$ for $i=1$ to $N_{I}$. The first isotope $\mathsf{ISODIR}$ is named \verb*|MACR | and represents an equivalent macroscopic isotope with a density of $1.0$ (cm b)$^{-1}$. The content of the isotopic multigroup cross section directory is described in \Sect{isotopedir}. \ No newline at end of file