diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE344/SectPOWER.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE344/SectPOWER.tex')
| -rw-r--r-- | doc/IGE344/SectPOWER.tex | 114 |
1 files changed, 114 insertions, 0 deletions
diff --git a/doc/IGE344/SectPOWER.tex b/doc/IGE344/SectPOWER.tex new file mode 100644 index 0000000..fa30ded --- /dev/null +++ b/doc/IGE344/SectPOWER.tex @@ -0,0 +1,114 @@ +\subsection{Contents of \dir{power} data structure}\label{sect:power} + +\vskip 0.2cm +A \dir{power} data structure is used to store the information related to +the powers and fluxes over the reactor core. This object has a signature +{\tt L\_POWER}; it is created using the \moc{FLPOW:} module. The reactor +fluxes and powers are recorded using several data formats. + +\subsubsection{The state-vector content}\label{sect:powerstate} + +\noindent +The dimensioning parameters $\mathcal{S}_i$, which are stored in the state +vector for this data structure, represent: + +\begin{itemize} + +\item The number of energy groups $N_{gr} = \mathcal{S}_1$ + +\item The total number of mesh-splitted volumes $N_{el} = \mathcal{S}_2$ + +\item The number of mesh-splitted volumes along x-axis $L_x = \mathcal{S}_3$ + +\item The number of mesh-splitted volumes along y-axis $L_y = \mathcal{S}_4$ + +\item The number of mesh-splitted volumes along z-axis $L_z = \mathcal{S}_5$ + +\item The number of reactor channels $N_{ch} = \mathcal{S}_6$ + +\item The number of bundles per channel $N_b = \mathcal{S}_7$ + +\end{itemize} + +\subsubsection{The \dir{power} directory}\label{sect:powerdir} + +\noindent +The following records will be found on the \dir{power} directory: + +\begin{DescriptionEnregistrement}{Records in \dir{power} data structure}{7.0cm} +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {Signature of the \dir{power} data structure ($\mathsf{SIGNA}=${\tt L\_POWER\blank{5}}).} +\IntEnr + {STATE-VECTOR}{$40$} + {Vector describing the various parameters associated with this data structure $\mathcal{S}_i$} +\DbleEnr + {PTOT\blank{8}}{1}{$MW$} + {The total reactor power.} +\DbleEnr + {VTOT\blank{8}}{1}{$cm^3$} + {The total reactor volume.} +\DbleEnr + {NORM\blank{8}}{1}{} + {The flux normalization factor.} +\IntEnr + {FLMIX\blank{7}}{$N_{ch}, N_b$} + {Fuel mixture indices per fuel bundle.} +\RealEnr + {FLUX\blank{8}}{$N_{el}, N_{gr}$}{cm$^{-2}$ s$^{-1}$} + {The normalized fluxes over the whole reactor geometry, + recorded per each mesh-splitted volume and per each energy + group. The flux values over the virtual regions are set to 0.} +\RealEnr + {VOLU-BUND\blank{3}}{$N_{ch}, N_b$}{cm$^{2}$} + {The volume of each fuel bundle.} +\RealEnr + {FLUX-BUND\blank{3}}{$N_{ch}, N_b, N_{gr}$}{cm$^{-2}$ s$^{-1}$} + {The normalized average fluxes recorded per each fuel bundle and per + each energy group.} +\RealEnr + {FLUX-DISTR\blank{2}}{$L_x, L_y, L_z, N_{gr}$}{cm$^{-2}$ s$^{-1}$} + {The normalized flux distribution over the whole reactor geometry, + recorded per each X-Y-Z planes and per each energy group.} +\RealEnr + {FLUX-RATIO\blank{2}}{$L_x, L_y, L_z, N_{gr}-1$}{} + {The fluxes ratios with respect to the thermal energy-group fluxes.} +\RealEnr + {POWER-BUND\blank{2}}{$N_{ch}, N_b$}{$kW$} + {The bundle powers.} +\RealEnr + {POWER-CHAN\blank{2}}{$N_{ch}$}{$kW$} + {The channel powers.} +\RealEnr + {POWER-DISTR\blank{1}}{$L_x, L_y, L_z$}{$W$} + {The power distribution over the reactor core, recorded per each + X-Y-Z planes. The power values over the non-fuel regions are set to 0.} +\RealEnr + {PMAX-CHAN\blank{3}}{$1$}{$kW$} + {The maximum channel power.} +\RealEnr + {PMAX-BUND\blank{3}}{$1$}{$kW$} + {The maximum bundle power.} +\RealEnr + {FORM-CHAN\blank{3}}{$1$}{} + {The radial power-form factor, defined as maximum-to-average + channel power in core.} +\RealEnr + {FORM-BUND\blank{3}}{$1$}{} + {The overall power-form factor, defined as maximum-to-average + bundle power in core.} +\RealEnr + {K-EFFECTIVE\blank{1}}{$1$}{} + {The effective multiplication factor, recovered from the + \dir{flux} data structure.} +\end{DescriptionEnregistrement} + +\vskip 0.2cm +\noindent +All stored fluxes are normalized either to the given total reactor power +or using the previously recorded normalization factor. The recorded +values of the maximum channel and bundle powers, the channel and +bundle power-form factors, and the effective multiplication factor, can +be used as power and criticity constraints for the optimization and fuel +management purposes. +\clearpage |
