summaryrefslogtreecommitdiff
path: root/doc/IGE344/SectPOWER.tex
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE344/SectPOWER.tex
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE344/SectPOWER.tex')
-rw-r--r--doc/IGE344/SectPOWER.tex114
1 files changed, 114 insertions, 0 deletions
diff --git a/doc/IGE344/SectPOWER.tex b/doc/IGE344/SectPOWER.tex
new file mode 100644
index 0000000..fa30ded
--- /dev/null
+++ b/doc/IGE344/SectPOWER.tex
@@ -0,0 +1,114 @@
+\subsection{Contents of \dir{power} data structure}\label{sect:power}
+
+\vskip 0.2cm
+A \dir{power} data structure is used to store the information related to
+the powers and fluxes over the reactor core. This object has a signature
+{\tt L\_POWER}; it is created using the \moc{FLPOW:} module. The reactor
+fluxes and powers are recorded using several data formats.
+
+\subsubsection{The state-vector content}\label{sect:powerstate}
+
+\noindent
+The dimensioning parameters $\mathcal{S}_i$, which are stored in the state
+vector for this data structure, represent:
+
+\begin{itemize}
+
+\item The number of energy groups $N_{gr} = \mathcal{S}_1$
+
+\item The total number of mesh-splitted volumes $N_{el} = \mathcal{S}_2$
+
+\item The number of mesh-splitted volumes along x-axis $L_x = \mathcal{S}_3$
+
+\item The number of mesh-splitted volumes along y-axis $L_y = \mathcal{S}_4$
+
+\item The number of mesh-splitted volumes along z-axis $L_z = \mathcal{S}_5$
+
+\item The number of reactor channels $N_{ch} = \mathcal{S}_6$
+
+\item The number of bundles per channel $N_b = \mathcal{S}_7$
+
+\end{itemize}
+
+\subsubsection{The \dir{power} directory}\label{sect:powerdir}
+
+\noindent
+The following records will be found on the \dir{power} directory:
+
+\begin{DescriptionEnregistrement}{Records in \dir{power} data structure}{7.0cm}
+\CharEnr
+ {SIGNATURE\blank{3}}{$*12$}
+ {Signature of the \dir{power} data structure ($\mathsf{SIGNA}=${\tt L\_POWER\blank{5}}).}
+\IntEnr
+ {STATE-VECTOR}{$40$}
+ {Vector describing the various parameters associated with this data structure $\mathcal{S}_i$}
+\DbleEnr
+ {PTOT\blank{8}}{1}{$MW$}
+ {The total reactor power.}
+\DbleEnr
+ {VTOT\blank{8}}{1}{$cm^3$}
+ {The total reactor volume.}
+\DbleEnr
+ {NORM\blank{8}}{1}{}
+ {The flux normalization factor.}
+\IntEnr
+ {FLMIX\blank{7}}{$N_{ch}, N_b$}
+ {Fuel mixture indices per fuel bundle.}
+\RealEnr
+ {FLUX\blank{8}}{$N_{el}, N_{gr}$}{cm$^{-2}$ s$^{-1}$}
+ {The normalized fluxes over the whole reactor geometry,
+ recorded per each mesh-splitted volume and per each energy
+ group. The flux values over the virtual regions are set to 0.}
+\RealEnr
+ {VOLU-BUND\blank{3}}{$N_{ch}, N_b$}{cm$^{2}$}
+ {The volume of each fuel bundle.}
+\RealEnr
+ {FLUX-BUND\blank{3}}{$N_{ch}, N_b, N_{gr}$}{cm$^{-2}$ s$^{-1}$}
+ {The normalized average fluxes recorded per each fuel bundle and per
+ each energy group.}
+\RealEnr
+ {FLUX-DISTR\blank{2}}{$L_x, L_y, L_z, N_{gr}$}{cm$^{-2}$ s$^{-1}$}
+ {The normalized flux distribution over the whole reactor geometry,
+ recorded per each X-Y-Z planes and per each energy group.}
+\RealEnr
+ {FLUX-RATIO\blank{2}}{$L_x, L_y, L_z, N_{gr}-1$}{}
+ {The fluxes ratios with respect to the thermal energy-group fluxes.}
+\RealEnr
+ {POWER-BUND\blank{2}}{$N_{ch}, N_b$}{$kW$}
+ {The bundle powers.}
+\RealEnr
+ {POWER-CHAN\blank{2}}{$N_{ch}$}{$kW$}
+ {The channel powers.}
+\RealEnr
+ {POWER-DISTR\blank{1}}{$L_x, L_y, L_z$}{$W$}
+ {The power distribution over the reactor core, recorded per each
+ X-Y-Z planes. The power values over the non-fuel regions are set to 0.}
+\RealEnr
+ {PMAX-CHAN\blank{3}}{$1$}{$kW$}
+ {The maximum channel power.}
+\RealEnr
+ {PMAX-BUND\blank{3}}{$1$}{$kW$}
+ {The maximum bundle power.}
+\RealEnr
+ {FORM-CHAN\blank{3}}{$1$}{}
+ {The radial power-form factor, defined as maximum-to-average
+ channel power in core.}
+\RealEnr
+ {FORM-BUND\blank{3}}{$1$}{}
+ {The overall power-form factor, defined as maximum-to-average
+ bundle power in core.}
+\RealEnr
+ {K-EFFECTIVE\blank{1}}{$1$}{}
+ {The effective multiplication factor, recovered from the
+ \dir{flux} data structure.}
+\end{DescriptionEnregistrement}
+
+\vskip 0.2cm
+\noindent
+All stored fluxes are normalized either to the given total reactor power
+or using the previously recorded normalization factor. The recorded
+values of the maximum channel and bundle powers, the channel and
+bundle power-form factors, and the effective multiplication factor, can
+be used as power and criticity constraints for the optimization and fuel
+management purposes.
+\clearpage