diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE344/SectPKINI.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE344/SectPKINI.tex')
| -rw-r--r-- | doc/IGE344/SectPKINI.tex | 163 |
1 files changed, 163 insertions, 0 deletions
diff --git a/doc/IGE344/SectPKINI.tex b/doc/IGE344/SectPKINI.tex new file mode 100644 index 0000000..9293909 --- /dev/null +++ b/doc/IGE344/SectPKINI.tex @@ -0,0 +1,163 @@ +\subsection{The \moc{PKINI:} module}\label{sect:pkini} + +\vskip 0.2cm +The \moc{PKINI:} module is used to initialize the point kinetics parameters, to define the delayed neutron information +and to set the global feedback parameters. The point kinetics equations are solved for a {\sl time stage} using module +\moc{PKINS:} (See Sect.~\ref{sect:pkins}) as a function of a fixed set of global parameters recovered from the \dds{map} object \dusa{MAPFL}. +Modules \moc{PKINI:} and \moc{PKINS:} are intended to be used with thermal-hydraulics module \moc{THM:} (See Sect.~\ref{sect:thm}) +to simulate a single reactor channel. + +\vskip 0.08cm + +\noindent +The \moc{PKINI:} module specification is: + +\begin{DataStructure}{Structure \moc{PKINI:}} +\dusa{MAPFL} \moc{:=} \moc{PKINI:} \dusa{MAPFL} \moc{::} \dstr{descpkini} +\end{DataStructure} + +\noindent where + +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\dusa{MAPFL}] \texttt{character*12} name of the \dds{map} +object containing fuel regions description and global parameter informations. + +\item[\dstr{descpkini}] structure describing the input data to the \moc{PKINI:} module. + +\end{ListeDeDescription} + +\vskip 0.2cm + +\subsubsection{Input data to the \moc{PKINI:} module}\label{sect:pkinistr} + +\begin{DataStructure}{Structure \dstr{descpkini}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +\moc{POWER} \dusa{power} \\ +$[$ \moc{EPSILON} \dusa{epsilon} $]$ \\ +\moc{TIME} \dusa{t0} \dusa{dt} \\ +\moc{LAMBDA} \dusa{lambda} \\ +\moc{NGROUP} \dusa{ngroup} \\ +\moc{BETAI} (\dusa{beta}(i),i=1,\dusa{ngroup}) \moc{LAMBDAI} (\dusa{dlambda}(i),i=1,\dusa{ngroup}) \\ +\moc{ALPHA} $[[$ \dusa{PNAME} $\{$ \moc{DIRECT} $|$ \moc{DERIV} $|$ \moc{SQDERIV} $\}$ \\ +~~~~$[~\{$ \moc{LINEAR} $|$ \moc{CUBIC} $\}~]$ \dusa{nalpha} (\dusa{x}(i) \dusa{y}(i),i=1,\dusa{nalpha}) $]]$ \moc{ENDA} \\ +$[$ \moc{PTIME} $[[$ \dusa{PNAME} $[~\{$ \moc{LINEAR} $|$ \moc{CUBIC} $\}~]~\{$\dusa{ntime} (\dusa{t}(i) \dusa{x}(i),i=1,\dusa{ntime}) $|$ \\ +~~~~\moc{T-DELT} $[$ \dusa{nxy} $]$ \dusa{t1} \dusa{t2} \moc{P-VALV} \dusa{gamma} \dusa{p1} \dusa{p2} \dusa{tb1} +\dusa{bval1} $[$ \moc{RESET} \dusa{p3} \dusa{tb2} \dusa{bval2} $]~\}~]]$ \moc{ENDP} $]$ \\ +; +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] integer index used to control the printing on screen: += 0 for no print; = 1 for minimum printing; larger values produce +increasing amounts of output. + +\item[\moc{POWER}] keyword used to set the initial reactor power. + +\item[\dusa{power}] reactor power in MW. + +\item[\moc{EPSILON}] keyword used to set the epsilon of the Runge-Kutta solver used to adjust the internal time step. The default value is $\epsilon=1.0\times 10^{-2}$. + +\item[\dusa{epsilon}] user-selected epsilon. + +\item[\moc{TIME}] keyword used to set the initial time and stage duration. It is possible to readjust the stage duration in module \moc{PKINS:}. + +\item[\dusa{t0}] initial time (s). + +\item[\dusa{dt}] stage duration (s). + +\item[\moc{LAMBDA}] keyword used to set the prompt neutron generation time. + +\item[\dusa{lambda}] prompt neutron generation time (s). + +\item[\moc{NGROUP}] keyword used to set the number of delayed precursor groups. + +\item[\dusa{ngroup}] number of delayed precursor groups. + +\item[\moc{BETAI}] keyword used to set the delayed neutron fraction vector. + +\item[\dusa{betai}] value of the delayed neutron fraction in a delayed precursor group. + +\item[\moc{LAMBDAI}] keyword used to set the delayed neutron time constant vector. + +\item[\dusa{lambdai}] value of the delayed neutron time constant (s) in a delayed precursor group. + +\item[\moc{ALPHA}] keyword used to set the feedback parameters. + +\item[\moc{PNAME}] character*12 name of a feedback parameter. A feedback parameter should be a global parameter defined in the fuelmap. + +\item[\moc{DIRECT}] keyword indicating that the reactivity is a direct function of the global parameter. + +\item[\moc{DERIV}] keyword indicating that the reactivity is a function of the variation of the local parameter with respect to its initial value. + +\item[\moc{SQDERIV}] keyword indicating that the reactivity is a function of the variation of the square root of the local parameter with respect to its initial value. +This option is generally used to represent the Doppler effect due to the fuel temperature. + +\item[\moc{LINEAR}] keyword indicating that interpolation of the reactivity effect uses linear Lagrange polynomials (default option). + +\item[\moc{CUBIC}] keyword indicating that interpolation of the reactivity effect uses the Ceschino method +with cubic Hermite polynomials, as presented in Ref.~\citen{Intech2011}. + +\item[\dusa{nalpha}] number of values in the table describing reactivity effects for feedback parameter \moc{PNAME}. + +\item[\dusa{x}] value of the global parameter. + +\item[\dusa{y}] corresponding reactivity coefficient. + +\item[\moc{PTIME}] keyword used to set the time laws for some feedback parameters. + +\item[\dusa{ntime}] number of values in the time law for feedback parameter \moc{PNAME}. + +\item[\dusa{t}] time (s) + +\item[\dusa{x}] corresponding value of the global parameter. + +\item[\moc{T-DELT}] keyword used to set an analytical time law between two times. + +\item[\dusa{nxy}] number of points used to construct the discrete time law. The default value is \dusa{nxy} $=1001$. + +\item[\dusa{t1}] initial time (s) for the analytical time law domain. + +\item[\dusa{t2}] final time (s) for the analytical time law domain. + +\item[\moc{P-VALV}] keyword used to define a time law corresponding to the depressurization of a gas reservoir. The time-vatiation of the pressure $P(t)$ in a +reservoir is given by a relation of the form +\begin{equation} +P(t)=\begin{cases} P_{\rm max} & {\rm if} \ t \le {\rm \dusa{tb1}}\\ +\max{\left(P_{\rm min},{\displaystyle P_{\rm max}\over\displaystyle (1+Bt)^\alpha}\right)} & {\rm otherwise}\end{cases} +\label{eq:pkin1} +\end{equation} + +\noindent where $P_{\rm max}$ is the pressure of the reservoir at time $t\le$ \dusa{tb1}, before depressurization and $P_{\rm min}$ is the final pressure after +depressurization. $B$ (s$^{-1}$) is the time constant of the exhaust pipe and $\alpha$ is given by relation +\begin{equation} +\alpha={2\gamma\over \gamma-1} +\label{eq:pkin2} +\end{equation} + +\noindent where $\gamma$ is a constant related to the gas capacitance ($=1.66$ for Helium). + +\item[\dusa{gamma}] value of $\gamma$ parameter in Eq.~(\ref{eq:pkin2}). + +\item[\dusa{p1}] value of pressure $P_{\rm max}$ in Eq.~(\ref{eq:pkin1}). + +\item[\dusa{p2}] value of pressure $P_{\rm min}$ in Eq.~(\ref{eq:pkin1}). + +\item[\dusa{tb1}] time (s) when the exhaust pipe is open with value \dusa{bval1}. We must have \dusa{t1}$\le$\dusa{tb1}$<$\dusa{t2}. + +\item[\dusa{bval1}] value of $B$ parameter in Eq.~(\ref{eq:pkin1}) after time \dusa{tb1}. + +\item[\moc{RESET}] optional keyword used to reset the opening of the exhaust pipe after a fixed period of time. + +\item[\dusa{p3}] value of pressure $P_{\rm min}$ in Eq.~(\ref{eq:pkin1}) after reset. + +\item[\dusa{tb2}] time (s) when the exhaust pipe is open with value \dusa{bval2}. We must have \dusa{tb1}$<$\dusa{tb2}$<$\dusa{t2}. + +\item[\dusa{bval2}] value of $B$ parameter in Eq.~(\ref{eq:pkin1}) after time \dusa{tb2}. + +\end{ListeDeDescription} +\clearpage |
