diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE344/SectDTHM.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE344/SectDTHM.tex')
| -rw-r--r-- | doc/IGE344/SectDTHM.tex | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/doc/IGE344/SectDTHM.tex b/doc/IGE344/SectDTHM.tex new file mode 100644 index 0000000..c546b00 --- /dev/null +++ b/doc/IGE344/SectDTHM.tex @@ -0,0 +1,304 @@ +\subsection{Contents of \dir{thm} data structure}\label{sect:thmdir} + +This data structure contains the thermal-hydraulics information required in a multi-physics calculation + +\subsubsection{The main \dir{thm} directory}\label{sect:thmdirmain} + +The following records and sub-directories will be found in the first level of a \dir{thm} directory: + +\begin{DescriptionEnregistrement}{Main records and sub-directories in \dir{thm}}{8.0cm} +\CharEnr + {SIGNATURE\blank{3}}{$*12$} + {parameter $\mathsf{SIGNA}$ containing the signature of the data structure} +\IntEnr + {STATE-VECTOR}{$40$} + {array $\mathcal{S}^{th}_{i}$ containing various integer parameters that are required to describe this data structure} +\RealEnr + {REAL-PARAM\blank{2}}{$40$}{} + {array $\mathcal{R}^{th}_{i}$ containing various floating-point parameters that are required to describe this data structure} +\RealEnr + {MESHZ\blank{7}}{$\mathcal{S}^{th}_{1}$}{m} + {initial axial meshes as recovered from the fuelmap} +\RealEnr + {REF-RAD\blank{5}}{$(\mathcal{S}^{th}_{7}-1)\times\mathcal{S}^{th}_{1}$}{m} + {initial radial meshes as recovered from the first call to {\tt THM:} module} +\RealEnr + {NB-FUEL\blank{5}}{$\mathcal{S}^{th}_{2}$}{} + {number of active fuel rods in a single assembly or number of active fuel pins in the cluster} +\RealEnr + {NB-TUBE\blank{5}}{$\mathcal{S}^{th}_{2}$}{} + {number of active guide tubes in a single assembly} +\RealEnr + {FRACT-PU\blank{4}}{$\mathcal{S}^{th}_{2}$}{} + {plutonium mass enrichment} +\OptRealEnr + {KCONDF\blank{6}}{$\mathcal{S}^{th}_{16}+3$}{$\mathcal{S}^{th}_{12}\ne 0$}{} + {coefficients of the user-defined correlation for the fuel thermal conductivity} +\OptCharEnr + {UCONDF\blank{6}}{$12$}{$\mathcal{S}^{th}_{12}\ne 0$} + {string variable set to {\tt KELVIN} or to {\tt CELSIUS}} +\OptRealEnr + {KCONDC\blank{6}}{$\mathcal{S}^{th}_{17}+3$}{$\mathcal{S}^{th}_{13}\ne 0$}{} + {coefficients of the user-defined correlation for the clad thermal conductivity} +\OptCharEnr + {UCONDC\blank{6}}{$12$}{$\mathcal{S}^{th}_{13}\ne 0$} + {string variable set to {\tt KELVIN} or to {\tt CELSIUS}} +\RealEnr + {ERROR-T-FUEL}{1}{K} + {absolute error in fuel temperature} +\RealEnr + {ERROR-D-COOL}{1}{g/cc} + {absolute error in coolant density} +\RealEnr + {ERROR-T-COOL}{1}{K} + {absolute error in coolant temperature} +\RealEnr + {ERROR-P-COOL}{1}{Pa} + {absolute error in coolant pressure} +\RealEnr + {MIN-T-FUEL\blank{2}}{1}{K} + {minimum fuel temperature} +\RealEnr + {MIN-D-COOL\blank{2}}{1}{g/cc} + {minimum coolant density} +\RealEnr + {MIN-T-COOL\blank{2}}{1}{K} + {minimum coolant temperature} +\RealEnr + {MIN-P-COOL\blank{2}}{1}{Pa} + {minimum coolant pressure} +\RealEnr + {MAX-T-FUEL\blank{2}}{1}{K} + {maximum fuel temperature} +\RealEnr + {MAX-D-COOL\blank{2}}{1}{g/cc} + {maximum coolant density} +\RealEnr + {MAX-T-COOL\blank{2}}{1}{K} + {maximum coolant temperature} +\RealEnr + {MAX-P-COOL\blank{2}}{1}{Pa} + {maximum coolant pressure} + \DirEnr + {HISTORY-DATA} + {sub-directory containing the historical values taken by the thermal-hydraulics parameters (mass flux, density, pressure, enthalpy, temperature) + in the coolant and in the fuel rod for the whole geometry} +\OptRealEnr + {RAD-PROF\_R\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{m} + {abscissas of the user-defined radial form factor table} +\OptRealEnr + {RAD-PROF\_F\blank{2}}{$\mathcal{S}^{th}_{18}$}{$\mathcal{S}^{th}_{18}\ne 0$}{ } + {form-factor values of the user-defined radial form factor table} +\OptRealEnr + {TIME-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{s} + {tabulation abscissa in time} +\OptRealEnr + {POWER-SR1\blank{2}}{$\mathcal{S}^{th}_{19}$}{$\mathcal{S}^{th}_{19}\ne 0$}{ } + {tabulation power factor corresponding to each tabulation abscissa in time} +\end{DescriptionEnregistrement} + +The signature for this data structure is $\mathsf{SIGNA}$=\verb*|L_THM|. The array $\mathcal{S}^{h}_{i}$ +contains the following information: + +\begin{itemize} +\item $\mathcal{S}^{th}_{1}$ contains the number of axial meshes $N_{\rm z}$. +\item $\mathcal{S}^{th}_{2}$ contains the number of channels in the radial plane $N_{\rm ch}$. +\item $\mathcal{S}^{th}_{3}$ contains the maximum number of iterations for computing the +conduction integral. +\item $\mathcal{S}^{th}_{4}$ contains the maximum number of iterations for computing the +center pellet temperature. +\item $\mathcal{S}^{th}_{5}$ contains the maximum number of iterations for computing the +coolant parameters (velocity, pressure, enthapy, density) in case of a transient calculation. +\item $\mathcal{S}^{th}_{6}$ contains the number of discretisation points in fuel. +\item $\mathcal{S}^{th}_{7}$ contains the number of total discretisation points in the whole fuel rod (fuel+cladding) $N_{\rm dtot}$. +\item $\mathcal{S}^{th}_{8}$ contains the type of calculation performed by the \moc{THM:} module: + +\begin{displaymath} \mathcal{S}^{th}_{8} = \left\{ +\begin{array}{rl} + 0 & \textrm{steady-state calculation} \\ + 1 & \textrm{transient calculation.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{9}$ contains the current time index. +\item $\mathcal{S}^{th}_{10}$ flag to set the gap correlation: + +\begin{displaymath} \mathcal{S}^{th}_{10} = \left\{ +\begin{array}{rl} + 0 & \textrm{built-in correlation is used} \\ + 1 & \textrm{set the heat exchange coefficient of the gap as a user-defined constant.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{11}$ flag to set the heat transfer coefficient between the clad and fluid: + +\begin{displaymath} \mathcal{S}^{th}_{11} = \left\{ +\begin{array}{rl} + 0 & \textrm{built-in correlation is used} \\ + 1 & \textrm{set the heat exchange coefficient between the clad and fluid as a user-defined constant.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{12}$ flag to set the fuel thermal conductivity: + +\begin{displaymath} \mathcal{S}^{th}_{12} = \left\{ +\begin{array}{rl} + 0 & \textrm{built-in correlation is used} \\ + 1 & \textrm{set the fuel thermal conductivity as a function of a simple user-defined correlation.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{13}$ flag to set the clad thermal conductivity: + +\begin{displaymath} \mathcal{S}^{th}_{13} = \left\{ +\begin{array}{rl} + 0 & \textrm{built-in correlation is used} \\ + 1 & \textrm{set the clad thermal conductivity as a function of a simple user-defined correlation.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{14}$ type of approximation used during the fuel conductivity evaluation: + +\begin{displaymath} \mathcal{S}^{th}_{14} = \left\{ +\begin{array}{rl} + 0 & \textrm{use a rectangle quadrature approximation} \\ + 1 & \textrm{use an average approximation.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{15}$ type of subcooling model: + +\begin{displaymath} \mathcal{S}^{th}_{15} = \left\{ +\begin{array}{rl} + 0 & \textrm{use the Bowring correlation} \\ + 1 & \textrm{use the Saha-Zuber correlation.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{16}$ contains the number of terms in the user-defined correlation for the fuel thermal conductivity (if $\mathcal{S}^{th}_{12}=1$). +\item $\mathcal{S}^{th}_{17}$ contains the number of terms in the user-defined correlation for the clad thermal conductivity (if $\mathcal{S}^{th}_{13}=1$). +\item $\mathcal{S}^{th}_{18}$ type of radial form factor for the power: + +\begin{displaymath} \mathcal{S}^{th}_{18} = \left\{ +\begin{array}{rl} + 0 & \textrm{flat radial form factor} \\ + N_{\rm rad} & \textrm{number of point in the radial form factor table.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{19}$ number of points in the user-defined time-power table. + +\item $\mathcal{S}^{th}_{20}$ type of fluid: +\begin{displaymath} \mathcal{S}^{th}_{20} = \left\{ +\begin{array}{rl} + 0 & \textrm{light water (H$_2$O)} \\ + 1 & \textrm{heavy water (D$_2$O).} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{21}$ flag indicating if the gap is considered: +\begin{displaymath} \mathcal{S}^{th}_{21} = \left\{ +\begin{array}{rl} + 0 & \textrm{gap is considered} \\ + 1 & \textrm{is not.} \\ +\end{array} \right. +\end{displaymath} + +\item $\mathcal{S}^{th}_{22}$ flag indicating the pressure drop option: +\begin{displaymath} \mathcal{S}^{th}_{22} = \left\{ +\begin{array}{rl} + 0 & \textrm{no pressure drop} \\ + 1 & \textrm{pressure drop is computed.} \\ +\end{array} \right. +\end{displaymath} + +\end{itemize} + +The array $\mathcal{R}^{th}_{i}$ contains the following information: + +\begin{itemize} +\item $\mathcal{R}^{th}_{1}$ contains the current time step in s. +\item $\mathcal{R}^{th}_{2}$ contains the fraction of reactor power released in fuel. +\item $\mathcal{R}^{th}_{3}$ contains the critical heat flux in W/m$^2$. +\item $\mathcal{R}^{th}_{4}$ contains the inlet coolant velocity in m/s. +\item $\mathcal{R}^{th}_{5}$ contains the outlet coolant pressure in Pa. +\item $\mathcal{R}^{th}_{6}$ contains the inlet coolant temperature in K. +\item $\mathcal{R}^{th}_{7}$ contains the fuel porosity. +\item $\mathcal{R}^{th}_{8}$ contains the fuel pellet radius +\item $\mathcal{R}^{th}_{9}$ contains the internal clad rod radius in m. +\item $\mathcal{R}^{th}_{10}$ contains the external clad rod radius in m. +\item $\mathcal{R}^{th}_{11}$ contains the guide tube radius in m. +\item $\mathcal{R}^{th}_{12}$ contains the hexagonal side in m. Used only for cluster geometries. +\item $\mathcal{R}^{th}_{13}$ contains the temperature maximum absolute error (in K) allowed in the solution of the conduction equations. +\item $\mathcal{R}^{th}_{14}$ contains the maximum relative error allowed in the matrix resolution of the conservation equations of the coolant. +\item $\mathcal{R}^{th}_{15}$ contains the relaxation parameter for the multiphysics parameters (temperature of fuel and coolant and density of coolant). +\item $\mathcal{R}^{th}_{16}$ contains the time in s. +\item $\mathcal{R}^{th}_{17}$ contains the heat transfer coefficient of the gap (if $\mathcal{S}^{th}_{10}=1$). +\item $\mathcal{R}^{th}_{18}$ contains the heat transfer coefficient between the clad and fluid (if $\mathcal{S}^{th}_{11}=1$). +\item $\mathcal{R}^{th}_{19}$ contains the surface temperature weighting factor of effective fuel temperature for the Rowlands approximation. +\item $\mathcal{R}^{th}_{20}$ reactor power, as defined after the {\tt POWER-LAW} keyword. +\item $\mathcal{R}^{th}_{21}$ maximum of variable variations in local parameters (used for time step adjustment strategy). +\item $\mathcal{R}^{th}_{22}$ contains the rugosity of the fuel rod in m, used in M\"uller-Steinhagen correlation for coolant friction. +\item $\mathcal{R}^{th}_{23}$ contains the angle in radians of the fuel channel with respect of the vertical axis. +\end{itemize} + +\subsubsection{The \moc{HISTORY-DATA} sub-directory}\label{sect:thmdirhistorydata} + +In the \moc{HISTORY-DATA} directory, the following sub-directories will be found: +\begin{DescriptionEnregistrement}{Sub-directories in \moc{HISTORY-DATA} directory}{7.0cm} \label{tabl:tabhistorydatadir} + \DirEnr + {TIMESTEP0000} + {sub-directory containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module {\sl in steady-state conditions}.} + \DirEnr + {TIMESTEP{\sl numt}} + {sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module in transient conditions at a given time index {\sl numt}. {\sl numt} can take values between 1 and 9999 in I4.4 format.} +\end{DescriptionEnregistrement} + +\noindent In the \moc{TIMESTEP0000} and in each of the \moc{TIMESTEP}{\sl numt} sub-directories, the following records will be found: +\begin{DescriptionEnregistrement}{Records in \moc{TIMESTEP} directories}{7.0cm} \label{tabl:tabtimestepdir} + \RealEnr + {TIME\blank{8}}{$1$}{$s$} + {time} + \DirlEnr + {\moc{CHANNEL}\blank{5}}{$N_{\rm ch}$} + {list of $N_{\rm ch}$ sub-directories containing all the values of the thermal-hydraulics parameters computed by the \moc{THM:} module and sorted channel by channel.} +\end{DescriptionEnregistrement} + +\noindent In each of the \moc{CHANNEL} sub-directories, the following records will be found: +\begin{DescriptionEnregistrement}{Records in each \moc{CHANNEL} directory}{7.0cm} \label{tabl:tabchanneldir} + \RealEnr + {VINLET\blank{6}}{$1$}{$m.s^{-1}$} + {inlet velocity} + \RealEnr + {TINLET\blank{6}}{$1$}{$K$} + {inlet temperature} + \RealEnr + {PINLET\blank{6}}{$1$}{$Pa$} + {inlet pressure} + \RealEnr + {VELOCITIES\blank{2}}{$N_{\rm z}$}{$m.s^{-1}$} + {velocity in each of the $N_{\rm z}$ bundles of the channel numbered {\sl numc}} + \RealEnr + {PRESSURE\blank{4}}{$N_{\rm z}$}{$Pa$} + {pressure in each bundle of the channel} + \RealEnr + {ENTHALPY\blank{4}}{$N_{\rm z}$}{$J.kg^{-1}$} + {enthalpy in each bundle of the channel} + \RealEnr + {DENSITY\blank{5}}{$N_{\rm z}$}{$kg.m^{-3}$} + {density in each bundle of the channel} + \RealEnr + {LIQUID-DENS\blank{1}}{$N_{\rm z}$}{$kg.m^{-3}$} + {density of liquid phase in each bundle of the channel} + \RealEnr + {TEMPERATURES}{$N_{\rm z}, N_{\rm dtot}$}{$K$} + {distribution of the temperature in the fuel-pin for each bundle of the channel} + \RealEnr + {CENTER-TEMPS}{$N_{\rm z}$}{$K$} + {center fuel pellet temperature in each bundle of the channel} + \RealEnr + {RADII}{$N_{\rm z}, N_{\rm dtot}-1$}{$m$} + {fuel and clad radii} +\end{DescriptionEnregistrement} + +\clearpage |
