diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE344/SectDREF.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE344/SectDREF.tex')
| -rw-r--r-- | doc/IGE344/SectDREF.tex | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/doc/IGE344/SectDREF.tex b/doc/IGE344/SectDREF.tex new file mode 100644 index 0000000..1f0668a --- /dev/null +++ b/doc/IGE344/SectDREF.tex @@ -0,0 +1,386 @@ +\subsection{The {\tt DREF:} module}\label{sect:DREFData} + +This module is used to set fixed sources that can be used in the right hand term of an adjoint +fixed source eigenvalue problem. This type of equation appears in generalized perturbation theory (GPT) applications. +The fixed sources set in {\tt DREF:} are corresponding to the gradient of the RMS functional which is a measure of +the discrepancy between actual and reference (or target) reaction rate distributions. The actual reaction rate distribution +is recovered from a \dusa{MICRO} or \dusa{MACRO} object. The reference reaction rate distribution is recovered from +a \dusa{MICREF} or \dusa{MACREF} object. + +\subsubsection{Minimizing the RMS error of power distribution} + +The fixed sources are computed for the case where the \dds{optimize} object was initialized in module {\tt DLEAK:}. This option is used with the {\sl OPTEX +reflector model}.\cite{optex3} + +Actual power values are defined as +$$ +P_i\{\bff(\phi)(r)\}\equiv \left< H , \phi \right>_i=\int_0^\infty dE \int_{V_i} d^3r \, H(\bff(r),E) \, \phi(\bff(r),E) +$$ + +\noindent where the power factors $H(\bff(r),E)$ and fluxes $\phi(\bff(r),E)$ are recovered from {\tt H-FACTOR} and +{\tt FLUX-INTG} records in a {\sc macrolib} object. + +\vskip 0.08cm + +The RMS error on power distribution is an homogeneous functional of the flux defined as +$$ +{\cal F}\{\bff(\phi)(r)\}=\sum_i \left({\left< H , \phi \right>_i\over \left< H , \phi \right>} - {P^*_i\over \sum_j P^*_j} \right)^2 +$$ +\noindent where the reference (or target) powers $P^*_i$ are obtained from the full-core reference transport calculation. + +\vskip 0.08cm + +The gradient of functional ${\cal F}\{\bff(\phi)(r)\}$ is a $G$-group function of space defined as +\begin{align*} +\bff(\nabla){\cal F}\{\bff(\phi)(\zeta);\bff(r)\}={2\over \left< H , \phi \right>} \sum_i \left({\left< H , \phi \right>_i\over \left< H , \phi \right>} - +{P^*_i\over \sum_j P^*_j}\right)\left( \delta_i(\bff(r))-{\left< H , \phi \right>_i\over \left< H , \phi \right>} \right) \left[\begin{matrix}H_1(\bff(r))\cr H_2(\bff(r)) \cr \vdots \cr H_G(\bff(r)) \end{matrix}\right] +\end{align*} + +\noindent where $\delta_i(\bff(r))=1$ if $\bff(r) \in V_i$ and $=0$ otherwise. + +\vskip 0.08cm + +Each fixed source $\bff(\nabla){\cal F}\{\bff(\phi)(\zeta);\bff(r)\}$ is orthogonal to the flux $\bff(\phi)(\bff(r))$. + +\subsubsection{Minimizing the RMS error associated with SPH factor calculation}\label{sect:sph_newton} + +The fixed sources are computed for the case where the \dds{optimize} object was initialized in module {\tt DSPH:}. Module +{\tt DREF} is call to compute the gradients required for computing SPH factors using an optimization algorithm (OPTEX in +{\tt PLQ:}, quasi-Newton in {\tt LNSR:}, Newton in {\tt FPSPH:}). Module {\tt DREF} computes the direct gradients and the +fixed sources to be used in a fixed-source eigenvalue problem originating from the generalized perturbation theory (GPT). + +\vskip 0.08cm + +Fundamental mode conditions are the cases where no neutron is leaking due to the boundary conditions. In the case where the macro-calculation over macro-group $g$ is done +in non-fundamental mode conditions, it is proposed to apply a SPH correction +on the {\sl albedo functions} corresponding to boundaries with a non-conservative condition in the reference calculation.\cite{sph2019} If the macro calculation is performed in diffusion +or $P_1$ approximation, the albedo function $\Lambda(\beta_g)$ corresponding to a non-conservative boundary is defined as +\begin{equation} +\Lambda(\beta_g)={1\over 2}{1-\beta_g \over 1+\beta_g} +\label{eq:eq1.6} +\end{equation} +\noindent where $\beta_g$ is the albedo in macro-group $g$. The net current $\bff(J)_g(\bff(r))$ escaping the domain at point $\bff(r)$ of the boundary is given by the {\sl albedo boundary condition} as +\begin{equation} +-\bff(J)_g(\bff(r))\cdot\bff(N)(\bff(r))+\Lambda(\beta_g) \, \phi_g(\bff(r))=0 \ \ \ \ {\rm if} \ \bff(r) \in \partial V +\label{eq:eq1.7} +\end{equation} + +\noindent where $\partial V$ is the fraction of the domain where the non-conservative boundary condition is applied and $\bff(N)(\bff(r))$ is the outgoing normal unit vector. + +\vskip 0.08cm + +The integrated flux are defined over the macro-region $m$ and macro-group $g$ as +\begin{equation} +F_{m,g}\equiv \left< \phi \right>_{m,g}=\int_{V_m} d^3r \, \phi_g(\bff(r)) +\label{eq:eq1.7a} +\end{equation} + +\vskip 0.08cm + +The net leakage $L_{g}$ over each macro group due to non conservative boundary conditions is defined as +\begin{equation} +L_{g}\equiv \left< \Lambda\phi\right>_g= \int_{\partial V} d^2r \, \Lambda(\beta_g) \, \phi_g(\bff(r)) =\int_{\partial V} d^2r \,\bff(J)_g(\bff(r))\cdot \bff(N)(\bff(r))\ . +\label{eq:eq1.8} +\end{equation} + +\vskip 0.08cm + +In order to preserve the neutron balance in macro-group $g$, cross section data and albedo functions must all be SPH corrected. The correction specific to albedo functions is written +\begin{equation} +\tilde\Lambda_g=\mu_{M+1,g}\, \Lambda^*_g +\label{eq:eq1.9} +\end{equation} +\noindent where $M$ is the total number of macro-regions and $\Lambda^*_g$ is the albedo function of the reference calculation in macro-group $g$. This +correction technique is proposed as an alternative to the discontinuity factor correction used by Ref. \citen{inl}. + +\vskip 0.08cm + +In fundamental mode conditions and in cases where Eq.~(\ref{eq:eq1.9}) is used, an infinity of +SPH factor sets can satisfy the reference reaction rates in each macro-group $g$. +A unique set is selected with the application of an arbitrary normalization condition. The simplest option is to use the {\sl flux-volume normalization condition} which consists to preserve the averaged flux +in the lattice. This normalization condition, satisfied in each macro-group $g$, is written +\begin{equation} +\sum_{m=1}^M \int_{V_m} d^3r \ \widetilde\phi_{g}(\bff(r))=\sum_{m=1}^M F_{m,g}^{*} \ , \ \ g \le G +\label{eq:eq1.10} +\end{equation} +\noindent where $F_{m,g}^{*}$ is the volume-integrated flux in macro-region $V_m$ and macro-group $g$ of the reference calculation. + +\vskip 0.08cm + +Equation~(\ref{eq:eq1.10}) can be rewritten as +\begin{equation} +\sum_{m=1}^M {F_{m,g}^{*}\over \mu_{m,g}}=\sum_{m=1}^M F_{m,g}^{*} \ , \ \ g \le G . +\label{eq:eq1.11} +\end{equation} + +The absorption rates are defined over the macro-region $m$ and macro-group $g$ as +\begin{equation} +P_{{\rm a},m,g}\equiv \left< \Sigma_{\rm a} , \phi \right>_{m,g}=\int_{V_m} d^3r \, \Sigma_{{\rm a},g}(\bff(r)) \, \phi_g(\bff(r)) +\label{eq:eq2.2} +\end{equation} +\noindent where $i\le I$ and $g\le G$ and where + +\begin{equation} +\Sigma_{{\rm a},g}(\bff(r))=\Sigma_g(\bff(r))-\Sigma_{{\rm s},g}(\bff(r)) . +\label{eq:eq2.3} +\end{equation} + +\vskip 0.08cm + +The $\nu$-fission rates are defined over the macro-region $m$ and macro-group $g$ as +\begin{equation} +P_{{\rm f},m,g}\equiv \left< \nu\Sigma_{\rm f} , \phi \right>_{m,g}=\int_{V_m} d^3r \, \nu\Sigma_{{\rm f},g}(\bff(r)) \, \phi_g(\bff(r)) +\label{eq:eq2.2b} +\end{equation} +\noindent where $i\le I$ and $g\le G$ and where $\nu\Sigma_{{\rm f},g}(\bff(r))$ is the macroscopic fission cross section multiplied by the averaged number of neutrons emitted per fission. + +\vskip 0.08cm + +The absorption and $\nu$-fission cross sections are corrected according to +\begin{equation} +\Sigma_{{\rm a},m,g}=\mu_{m,g}\, \Sigma^*_{{\rm a},m,g} =\mu_{m,g}\, {P^*_{{\rm a},m,g} \over F^*_{m,g}} +\label{eq:eq2.4} +\end{equation} + +\noindent and +\begin{equation} +\nu\Sigma_{{\rm f},m,g}=\mu_{m,g}\, \nu\Sigma^*_{{\rm f},m,g} =\mu_{m,g}\, {P^*_{{\rm f},m,g} \over F^*_{m,g}} +\label{eq:eq2.4b} +\end{equation} + +\noindent where the reference integrated fluxes $F^*_{m,g}$ are also obtained from the full-core reference transport calculation. The SPH factors are normalized in each macro energy group +according to +\begin{equation} +\sum_{j=1}^M{F^*_{j,g} \over \mu_{j,g}} = \sum_j F^*_{j,g} \ , \ \ g \le G . +\label{eq:eq2.5} +\end{equation} + +\vskip 0.08cm + +The RMS error on absorption distribution is an homogeneous functional of the flux defined as +\begin{equation} +{\cal F}\{\bff(\phi)(\bff(r))\}=\sum_{m=1}^{M+2} \sum_{g=1}^G \left( f_{m,g}\{\bff(\phi)(\bff(r))\} \right)^2 +\label{eq:eq2.6} +\end{equation} +\noindent where the components $f_{m,g}\{\bff(\phi)(\bff(r))\}$ are the $M+2$ conditions to satisfy in each macro-group. They are defined as +\begin{equation} +f_{m,g}\{\bff(\phi)(\bff(r))\}=\begin{cases} {{\displaystyle \left< \Sigma_{\rm a} , \phi \right>_{m,g}\over\displaystyle \left< \Sigma_{\rm a} , \phi \right>} {\displaystyle P^*_{{\rm a},{\rm tot}}\over \displaystyle \Delta_{{\rm a},m,g} } - {\displaystyle P^*_{{\rm a},m,g} \over \displaystyle \Delta_{{\rm a},m,g} }} & \text{if $m\le M$} \\ +\sqrt{M}\left( {\displaystyle \left<\Lambda+\Sigma_{\rm a} , \phi\right>_g\over\displaystyle \left< \nu\Sigma_{\rm f} ,\phi \right>} {\displaystyle P^*_{{\rm f},{\rm tot}}\over\displaystyle \Delta_{{\rm L},g} } - {\displaystyle L^*_{g}+P^*_{{\rm a},g} \over\displaystyle \Delta_{{\rm L},g}}\right) & \text{if $m = M+1$} \\ +{\displaystyle 1\over \displaystyle F^*_g}\sum\limits_{j=1}^M {\displaystyle F^*_{j,g} \over \displaystyle \mu_{j,g}} - 1 & \text{if $m= M+2$} \end{cases} +\label{eq:eq2.7} +\end{equation} + +\noindent with +\begin{description} +\item[$P^*_{{\rm a},m,g}=$] reference (or target) absorption rates obtained from the full-core reference transport calculation +\item[$P^*_{{\rm f},m,g}=$] reference (or target) $\nu$-fission rates obtained from the full-core reference transport calculation +\item[$\Delta_{{\rm a},m,g}=$] low limit absorption rates defined as $\max \left( 10^{-4} P^*_{{\rm a},{\rm tot}},P^*_{{\rm a},m,g}\right)$ in order to avoid +division by small numbers. +\item[$L^*_{g}=$] reference leakage in macro-group $g$ +\item[$\Lambda(\bff(r))=$] albedo function defined on the non-conservative boundaries $\partial V$ of the domain +\item[$\Delta_{{\rm L},g}=$] low limit leakage defined as $\max \left( 10^{-4} P^*_{{\rm f},{\rm tot}},L^*_{g}+P^*_{{\rm a},g} \right)$ in order to avoid +division by small numbers. +\end{description} + +\noindent and where $P^*_{{\rm a},g}=\sum_m P^*_{{\rm a},m,g}$, $P^*_{{\rm a},{\rm tot}}=\sum_g P^*_{{\rm a},g}$, $P^*_{{\rm f},{\rm tot}}=\sum_m \sum_g P^*_{{\rm f},m,g}$ and $F^*_g=\sum_m F^*_{m,g}$. + +\vskip 0.08cm + +The condition $m=M+1$ in +Eq.~(\ref{eq:eq2.7}) is based on the preservation of the effective multiplication factor of the core. The SPH normalization relations~(\ref{eq:eq1.11}) are +included in the RMS error in order to simplify the optimization process. + +\vskip 0.08cm + +The gradient of functional~(\ref{eq:eq2.6}) with respect to a variation of flux $\phi$ is a $G$-group function of space whose components are defined as +\begin{equation} +\nabla {\cal F}_g\{\bff(\phi)(\bff(\zeta));\bff(r)\}=\left[ {d\over d\epsilon}{\cal F}\{\bff(\phi)(\bff(\zeta))+\epsilon \, \bff(\delta)_g(\bff(\zeta)-\bff(r))\}\right]_{\epsilon=0} ; \ \ g=1,G +\label{eq:eq2.7a} +\end{equation} +\noindent where $\bff(\delta)_g(\bff(\zeta)-\bff(r))$ is a multidimensional Dirac delta distribution defined as +\begin{equation} +\bff(\delta)_g(\bff(\zeta)-\bff(r))={\rm col} \left[\delta_{g,h} \, \delta(\bff(\zeta)-\bff(r)) \, , \, h=1,G \right] +\label{eq:eq2.7b} +\end{equation} +\noindent where $\delta_{g,h}$ is a Kronecker delta function and $\delta(\bff(\zeta)-\bff(r))$ is the classical Dirac delta distribution. + +\vskip 0.08cm +Next, we evaluate the gradient of each component $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to the SPH factors and we construct a rectangular matrix $\shadowA$, of size $(M+2)G\times (M+1)G$, defined as +\begin{equation} +\shadowA=\left\{ {\partial f_{m,g}\over \partial \mu_{n,h}} ; \ \ m\le M+2, \ n \le M+1, \ g\le G, \ h\le G \right\} . +\label{eq:eq2.8} +\end{equation} + +\vskip 0.08cm + +We first evaluate the direct contribution of these derivatives for a variation of the SPH factors assigned to cross sections (i.e., for $n\le M$). Direct contributions are the chain rule terms not involving a variation in flux. These direct +gradients are +\begin{equation} +\left.{\partial f_{m,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace ={\left< \Sigma_{\rm a} , \phi \right>_{m,g}\over \mu_{n,h} \left< \Sigma_{\rm a} , \phi \right>} {P^*_{{\rm a},{\rm tot}}\over \Delta_{{\rm a},m,g} } \left( \delta_{m,n}\delta_{g,h}-{\left< \Sigma_{\rm a} , \phi \right>_{n,h}\over \left< \Sigma_{\rm a} , \phi \right>} \right) \ \ {\rm if} \ m\le M +\label{eq:eq2.9} +\end{equation} + +\begin{equation} +\left.{\partial f_{M+1,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace = { \sqrt{M} \over \mu_{n,h} \left< \nu\Sigma_{\rm f},\phi\right>} {P^*_{{\rm f},{\rm tot}}\over \Delta_{{\rm L},g} } +\left( \delta_{g,h}\left<\Sigma_{\rm a} ,\phi\right>_{n,h}-\left<\Lambda+\Sigma_{\rm a} ,\phi\right>_g {\left< \nu\Sigma_{\rm f} ,\phi \right>_{n,h} \over \left< \nu\Sigma_{\rm f},\phi\right>}\right) +\label{eq:eq2.10} +\end{equation} + +\noindent and +\begin{equation} +\left.{\partial f_{M+2,g}\over \partial \mu_{n,h}}\right|^{\rm direct} \negthinspace\negthinspace = -\delta_{g,h}\, {F^*_{n,g} \over \mu_{n,g}^2 F^*_g} . +\label{eq:eq2.11} +\end{equation} + +\vskip 0.08cm + +The SPH factors assigned to the albedo functions are not responsible for any direct contributions to the derivatives of component $f_{m,g}\{\bff(\phi)(\bff(r))\}$. Consequently, +\begin{equation} +\left.{\partial f_{m,g}\over \partial \mu_{M+1,h}}\right|^{\rm direct}=0 . +\label{eq:eq2.11a} +\end{equation} + +\vskip 0.08cm + +The indirect gradient of each component $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to the SPH factors are an effect of {\sl flux variation} and are obtained using {\sl generalized perturbation theory} (GPT). The gradient of functional $f_{m,g}\{\bff(\phi)(\bff(r))\}$ with respect to a variation of flux is a $G$-group function of space defined as +\begin{equation} +\bff(\nabla)f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\}=\left[\begin{matrix}f_{m,g,1}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \cr f_{m,g,2}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \cr \vdots\cr f_{m,g,G}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \end{matrix}\right] +\label{eq:eq2.12} +\end{equation} + +\noindent where the group-$h$ components are +\begin{equation} +\nabla f_{m,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} = {\Sigma_{{\rm a},h}(\bff(r))\over \left< \Sigma_{\rm a} , \phi \right>} {P^*_{{\rm a},{\rm tot}}\over \Delta_{{\rm a},m,g} } \left( \delta_m(\bff(r)) \, \delta_{g,h}- +{\left< \Sigma_{\rm a} , \phi \right>_{m,g}\over \left< \Sigma_{\rm a} , \phi \right>} \right) \ \ {\rm if} \ m\le M +\label{eq:eq2.13} +\end{equation} +\noindent where $\delta_m(\bff(r))=1$ if $\bff(r) \in V_m$ and $=0$ otherwise, + +\begin{eqnarray} +\nonumber \nabla f_{M+1,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \negthinspace &=& \negthinspace { \sqrt{M} \over \left< \nu\Sigma_{\rm f} , \phi \right>} {P^*_{{\rm f},{\rm tot}}\over \Delta_{{\rm L},g} } \bigg[ \left(\Lambda_{h}(\bff(r))+\Sigma_{{\rm a},h}(\bff(r))\right) \, \delta_{g,h} \\ +&-& \negthinspace \nu\Sigma_{{\rm f},h}(\bff(r))\, {\left< \Lambda+\Sigma_{\rm a} , \phi \right>_{g}\over \left< \nu\Sigma_{\rm f} , \phi \right>} \bigg] +\label{eq:eq2.14} +\end{eqnarray} + +\noindent and +\begin{equation} +\nabla f_{M+2,g,h}\{\bff(\phi)(\bff(\zeta));\bff(r)\} = 0 . +\label{eq:eq2.15} +\end{equation} + +\vskip 0.08cm + +We first compute the gradient $\bff(g)$ of the RMS error with respect to a variation of the SPH factors. We define three column vectors as +\begin{equation} +\bff(f)={\rm col} \left\{ f_{m,g}\{\bff(\phi)(\bff(r))\} \ ; \ \ m\le M+2, \ g\le G \right\} , +\label{eq:eq2.16} +\end{equation} + +\begin{equation} +\bff(\nabla)\bff(f)={\rm col} \left\{ \bff(\nabla)f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\} \ ; \ \ m\le M+2, \ g\le G \right\} +\label{eq:eq2.17} +\end{equation} + +\noindent and +\begin{equation} +\bff(g)={\rm col} \left\{ {\partial {\cal F}\{\bff(\phi)(\bff(r))\} \over \partial \mu_{n,h}} ; \ \ n\le M+1, \ h\le G \right\} . +\label{eq:eq2.18} +\end{equation} + +\vskip 0.08cm + +From Eqs.~(\ref{eq:eq2.6}) and~(\ref{eq:eq2.7a}), we have +\begin{equation} +{\cal F}\{\bff(\phi)(\bff(r))\}=\bff(f)^\top \bff(f) +\label{eq:eq2.19} +\end{equation} + +\noindent and +\begin{equation} +\bff(\nabla){\cal F}\{\bff(\phi)(\bff(\zeta));\bff(r)\}=2\bff(f)^\top \bff(\nabla)\bff(f) +\label{eq:eq2.20} +\end{equation} + +\noindent so that +\begin{equation} +{\partial {\cal F} \over \partial \mu_{n,h}} =2\sum_{m=1}^{M+2} \sum_{g=1}^G f_{m,g}\, {\partial f_{m,g} \over \partial \mu_{n,h}} +\label{eq:eq2.21} +\end{equation} + +\noindent where the derivatives of $f_{m,g}$ are computed taking into account both direct and indirect contributions: +\begin{equation} +{\partial f_{m,g} \over \partial \mu_{n,h}}=\left.{\partial f_{m,g} \over \partial \mu_{n,h}}\right|^{\rm direct}+\left< \bff(\nabla) f_{m,g}\{\bff(\phi)(\bff(\zeta));\bff(r)\},{\partial\over \partial\mu_{n,h}}\bff(\phi)(\bff(r))\right> +\label{eq:eq2.22} +\end{equation} + +\noindent and where the bracket stands for a summation over the $G$ energy groups and an integration over the domain. The flux derivatives $\partial\bff(\phi) / \partial\mu_{n,h}$ are $G$-group functions obtained using generalized perturbation theory. + +\vskip 0.08cm + +Equation~(\ref{eq:eq2.21}) can be rewritten in matrix form as +\begin{equation} +\bff(g)=2 \shadowA^\top \bff(f) . +\label{eq:eq2.23} +\end{equation} + +\vskip 0.08cm + +The bracket term in Eq.~(\ref{eq:eq2.22}) is computed by module {\tt GRAD:}, outside module {\tt DREF:}. Module +{\tt GRAD:} compute only the {\sl direct contributions} of the gradients: +\begin{itemize} +\item By default, the objective function ${\cal F}\{\bff(\phi)(\bff(r))\}$ and direct components of vector $\bff(g)$ are computed. +\item If keyword {\tt NEWTON} is set, individual components $f_{m,g}\{\bff(\phi)(\bff(r))\}$ and direct components of matrix $\shadowA$ are computed. +\end{itemize} + +\subsubsection{Calling specifications} + +The calling specifications for module {\tt DREF:} are: + +\begin{DataStructure}{Structure \dstr{DREF:}} +\dusa{SOURCE}~\dusa{OPTIM}~\moc{:=}~\moc{DREF:}~\dusa{OPTIM}~\dusa{FLUX}~\dusa{TRACK}~$\{$~\dusa{MICRO}~$|$~\dusa{MACRO}~$\}$ \\ +~~~~~~$\{$~\dusa{MICREF}~$|$~\dusa{MACREF}~$\}$ \\ +~~~~~~$[$ \moc{::}~$[$ \moc{EDIT}~\dusa{iprint} $]~[$ \moc{NODERIV} $]~[$ \moc{NEWTON} $]~[$ \moc{RMS} {\tt>>}\dusa{RMS\_VAL}{\tt <<}~$]~~]$~; +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\dusa{SOURCE}] {\tt character*12} name of a {\sc fixed sources} (type {\tt L\_SOURCE}) object open in creation +mode. This object contains the adjoint fixed source corresponding to the RMS error on power distribution. + +\item[\dusa{OPTIM}] \texttt{character*12} name of the \dds{optimize} object ({\tt L\_OPTIMIZE} signature) containing the +optimization informations. Object \dusa{OPTIM} must appear on both LHS and RHS to be able to update the previous values. + +\item[\dusa{FLUX}] {\tt character*12} name of the actual {\sc flux} (type {\tt L\_FLUX}) object open in read-only mode. + +\item[\dusa{TRACK}] {\tt character*12} name of the actual {\sc tracking} (type {\tt L\_TRACK}) object open in read-only mode. + +\item[\dusa{MICRO}] {\tt character*12} name of the actual {\sc microlib} (type {\tt L\_LIBRARY}) object open in read-only mode. The information on +the embedded macrolib is used. + +\item[\dusa{MACRO}] {\tt character*12} name of the actual {\sc macrolib} (type {\tt L\_MACROLIB}) object open in read-only mode. + +\item[\dusa{MICREF}] {\tt character*12} name of reference (or target) {\sc microlib} (type {\tt L\_LIBRARY}) object open in read-only mode. The +information contained in the embedded macrolib is used to compute $P^*_i$ values. + +\item[\dusa{MACREF}] {\tt character*12} name of reference (or target) {\sc macrolib} (type {\tt L\_MACROLIB}) object open in read-only mode. This +information is used to compute $P^*_i$ values. + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt DREF:}. =0 for no print; =1 for minimum printing (default value). + +\item[\moc{NODERIV}] keyword used to stop processing of {\tt DREF:} module after calculation of objective function. By default, information +related to the gradient of the RMS functional is also computed. + +\item[\moc{NEWTON}] keyword used to enable the detailed calculation of gradient for all components of the objective function, as required by a +full Newtonian approach. By default, only the gradient of the objective function is computed. + +\item[\moc{RMS}] keyword used to recover the RMS error on power or absorption distribution in a CLE-2000 variable. + +\item[\dusa{RMS\_VAL}] {\tt character*12} CLE-2000 variable name in which the extracted RMS value will be placed. This variable should be +declared real or double precision. + +\end{ListeDeDescription} + +\eject |
