diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE335/Section3.35.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE335/Section3.35.tex')
| -rw-r--r-- | doc/IGE335/Section3.35.tex | 378 |
1 files changed, 378 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.35.tex b/doc/IGE335/Section3.35.tex new file mode 100644 index 0000000..bf4858c --- /dev/null +++ b/doc/IGE335/Section3.35.tex @@ -0,0 +1,378 @@ +\subsection{The {\tt APX:} module}\label{sect:APEXData} + +This component of the lattice code is dedicated to the constitution of the +reactor database in APEX format, similar to the file produced by APOLLO2-A.\cite{Apollo2} +The APEX file intended to store {\sl all} the nuclear data, produced in +the lattice code, that is useful +in reactor calculations including fuel management and space-time kinetics. +Multigroup lattice calculations are too expensive to be executed dynamically +from the driver of the global reactor calculation. A more feasible +approach is to create a reactor database where a finite number of lattice +calculation results are tabulated against selected {\sl global parameters} +chosen so as to represent expected operating conditions of the reactor. The +\moc{APX:} operator is used to create and construct a {\sc APEX} file. +The APEX file is written in {\sc hdf5} format, allowing full portability and hierarchical +data organization. It can be edited and modified using the HDFView tool. + +\vskip 0.1cm + +Each elementary calculation is characterized by a tuple of {\sl global parameters}. +These global parameters are of different types, depending on the nature of the +study under consideration: type of assembly, power, temperature in a mixture, +concentration of an isotope, time, burnup or exposure rate in a depletion calculation, +etc. Each step of a depletion calculation represents an elementary calculation. +The {\sc APEX} file is often presented as a {\sl multi-parameter reactor database}. + +\vskip 0.1cm + +For each elementary calculation, the results are recovered from the output of the +\moc{EDI:} operator and stored in a set of {\sl homogenized mixture} +directories. The \moc{EDI:} operator is responsible for performing condensation +in energy and homogenization in space of the macroscopic and microscopic cross +sections. All the elementary calculations gathered in a single {\sc apex} file are +characterized by a single output geometry and a unique output energy-group +structure. + +\vskip 0.1cm + +In each homogenized mixture directory, the \moc{APX:} operator recover +cross sections for a number of {\sl particularized isotopes} and {\sl macroscopic total and/or +residual sets}, a collection of isotopic cross sections weighted by isotopic number densities. +Cross sections for particularized isotopes and macroscopic sets are recovered for +{\sl selected reactions}. Other information is also recovered: multigroup neutron +fluxes, isotopic number densities, fission spectrum and yields, SPH or discontinuity factors and +albedos. Discontinuity factors and equivalent albedos are written in group {\tt miscelleaneous}. +Finally, note that cross section information written on the {\sc apex} file is {\sl not} +transport corrected and {\sl not} SPH corrected. + +\vskip 0.1cm + +A different specification of the \moc{APX:} function call is used for +creation and construction of the {\sc apex} file. +\begin{itemize} +\item The first specification is used to initialize the {\sc apex} data structure +as a function of the \dds{microlib} used in the reference calculation. The initialization +call is also used to set the choice of global parameters, local variables, particularized +isotopes, macroscopic sets and selected reactions. +\item A modification call to the \moc{APX:} function is performed after each +elementary calculation in order to recover output information processed by \moc{EDI:} +(condensed and homogenized cross sections) and \moc{EVO:} (burnup dependant values). +Global parameters and local variables can optionnally be recovered from \dds{microlib} +objects. The \moc{EDI:} calculation is generally performed with option {\tt MICR ALL}. +\end{itemize} + +The calling specifications are: + +\vskip -0.5cm + +\begin{DataStructure}{Structure \dstr{APX:}} +$\{$~~\dusa{APXNAM} \moc{:=} \moc{APX:} $[$ \dusa{APXNAM} $]~[$~\dusa{HMIC} $]$ \moc{::} \dstr{apex\_data1} \\ +~~~$|$~~~\dusa{APXNAM} \moc{:=} \moc{APX:} \dusa{APXNAM}~\dusa{EDINAM}~$[$ \dusa{BRNNAM} $]$ \moc{::} \dstr{apex\_data2} \\ +~~~$|$~~~\dusa{APXNAM} \moc{:=} \moc{APX:} \dusa{APXNAM} $[[$ \dusa{APXRHS} $]]$ \moc{::} \dstr{apex\_data3} $\}$ \\ +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\dusa{APXNAM}] {\tt character*12} name of the {\sc lcm} object containing the +{\sl master} {\sc apex} data structure. + +\item[\dusa{HMIC}] {\tt character*12} name of the reference \dds{microlib} (type {\tt +L\_LIBRARY}) containing the microscopic cross sections. Isotope names are recovered +from \dusa{HMIC}. + +\item[\dusa{EDINAM}] {\tt character*12} name of the {\sc lcm} object (type {\tt +L\_EDIT}) containing the {\sc edition} data structure corresponding to an elementary +calculation. The {\sc edition} data produced by the last call to the {\tt EDI:} module +is used. + +\item[\dusa{BRNNAM}] {\tt character*12} name of the {\sc lcm} object (type {\tt +L\_BURNUP}) containing the {\sc burnup} data structure. This object is compulsory if one +of the following parameters is used: \moc{IRRA}, \moc{FLUB} and/or \moc{TIME}. + +\item[\dusa{APXRHS}] {\tt character*12} name of the {\sl read-only} {\sc apex} file. This +data structure is concatenated to \dusa{APXNAM} using the \dusa{apex\_data3} data structure, +as presented in \Sect{descsapx3}. \dusa{APXRHS} must be defined with the same number of energy +groups and the same number of homogeneous regions as \dusa{APXNAM}. Moreover, all the +global and local parameters of \dusa{APXRHS} must be defined in \dusa{APXNAM}. \dusa{APXNAM} +may be defined with {\sl global} parameters not defined in \dusa{APXRHS}. + +\item[\dusa{apex\_data1}] input data structure containing initialization information (see \Sect{descsapx1}). + +\item[\dusa{apex\_data2}] input data structure containing information related to the recovery of an +elementary calculation (see \Sect{descsapx2}). + +\item[\dusa{apex\_data3}] input data structure containing information related to the catenation of one or many +{\sl read-only} {\sc apex} (see \Sect{descsapx3}). + +\end{ListeDeDescription} + +\subsubsection{Initialization data input for module {\tt APX:}}\label{sect:descsapx1} + +\vskip -0.8cm + +\begin{DataStructure}{Structure \dstr{apex\_data1}} +$[$~\moc{EDIT} \dusa{iprint}~$]$ \\ +$[$~\moc{NOML}~\dusa{nomlib}~$]$ \\ +$[[$~\moc{PARA}~\dusa{parnam}~\dusa{parkey}~\{~\moc{BURN}~$|$~\moc{VALE}~\{~\moc{FLOT}~$|$~\moc{CHAI}~$|$~\moc{ENTI}~\}~\} $]]$ \\ +$[$~\moc{ISOT}~\{~\moc{TOUT}~$|$ \moc{MILI}~\dusa{imil}~$|~[$~\moc{FISS}~$]~[$~\moc{PF}~$]~[$~(\dusa{HNAISO}(i),~i=1,$N_{\rm iso}$) $]$~\}~$]$ \\ +$[[$~\moc{MACR}~\{~\moc{TOUT}~$|$~\moc{REST}~\}~$]]$ \\ +$[$~\moc{REAC}~(\dusa{HNAREA}(i),~i=1,$N_{\rm reac}$) $]$ \\ +{\tt ;} +\end{DataStructure} + +\goodbreak +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] key word used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +APX:}. =0 for no print; =1 for minimum printing (default value). + +\item[\moc{NOML}] key word used to input a user--defined name for the {\sc apex} file. + +\item[\dusa{nomlib}] {\tt character*80} user-defined name. + +\item[\moc{PARA}] keyword used to define a single global parameter. + +\item[\dusa{parnam}] {\tt character*80} user-defined name of a global parameter. The +following names are recommended: + +\begin{center} +\begin{tabular}{| l | l | l |} +\hline +\dusa{parnam} & type & recovered from \\ +\hline +Burnup & fuel burnup (MW-d/tonne) & \dusa{BRNNAM} \\ +Time & time (s) & \dusa{BRNNAM} \\ +Power & reactor power (MeV/s) & \dusa{BRNNAM} \\ +Exposure & flux exposure (n/Kb) & \dusa{BRNNAM} \\ +Flux & neutron flux (n/cm$^2$/s) & \dusa{BRNNAM} \\ +Heavy & heavy mass in fuel (g) & \dusa{BRNNAM} \\ +ModeratorDensity & moderator density (g/cc) & {\tt VALE FLOT} \\ +CoolantDensity & coolant density (g/cc) & {\tt VALE FLOT} \\ +BoronPPM & Boron concentration (ppm) & {\tt VALE FLOT} \\ +ModeratorTemperature & moderator temperature (K) & {\tt VALE FLOT} \\ +CoolantTemperature & coolant temperature (K) & {\tt VALE FLOT} \\ +FuelTemperature & fuel temperature (K) & {\tt VALE FLOT} \\ +ModeratorVoid & void fraction in coolant & {\tt VALE FLOT} \\ +\hline +\end{tabular} +\end{center} + +\item[\moc{BURN}] keyword used to recover the local parameter value from input object \dusa{BRNNAM}. +This keyword cal be used if \dusa{parnam} $=$ \moc{Burnup}, \moc{Time}, \moc{Power}, \moc{Exposure}, \moc{Flux} or \moc{Heavy}. + +\item[\moc{VALE}] keyword used to define a user-defined quantity as global parameter. +This keyword must be followed by the type of parameter. + +\item[\moc{FLOT}] keyword used to indicate that the user-defined global parameter +is a floating point value. + +\item[\moc{CHAI}] keyword used to indicate that the user-defined global parameter +is a {\tt character*12} value. + +\item[\moc{ENTI}] keyword used to indicate that the user-defined global parameter +is an integer value. + +\item[\moc{ISOT}] keyword used to select the set of particularized isotopes. + +\item[\moc{TOUT}] keyword used to select all the available isotopes in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\moc{MILI}] keyword used to select the isotopes in the reference +\dds{microlib} named \dusa{HMIC} from a specific mixture as particularized isotopes. + +\item[\dusa{imil}] index of the mixture where the particularized isotopes are recovered. + +\item[\moc{FISS}] keyword used to select all the available fissile isotopes in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\moc{PF}] keyword used to select all the available fission products in the reference +\dds{microlib} named \dusa{HMIC} as particularized isotopes. + +\item[\dusa{HNAISO}(i)] {\tt character*12} user-defined isotope name. $N_{\rm iso}$ is the +total number of explicitely--selected particularized isotopes. + +\item[\moc{MACR}] keyword used to select a type of macroscopic set. A maximum of two macroscopic sets is allowed. + +\item[\moc{TOUT}] keyword used to select all the available isotopes in the macroscopic set. + +\item[\moc{REST}] keyword used to remove all the particularized isotope contributions +from the macroscopic set. + +\item[\moc{REAC}] keyword used to select the set of nuclear reactions. + +\item[\dusa{HNAREA}(i)] {\tt character*4} name of a user-selected reaction. $N_{\rm reac}$ +is the total number of selected reactions. \dusa{HNAREA}(i) is chosen among the following values: + +\begin{center} +\begin{tabular}{| l | l |} +\hline +\dusa{HNAREA} & type \\ +\hline +\moc{TOTA} & Total cross sections \\ +\moc{TOP1} & Total $P_1$-weighted cross sections \\ +\moc{ABSO} & Absorption cross sections. Note: \moc{ABSO}$=$\moc{TOTA}$-$\moc{DIFF}$_{\ell=0}$ \\ +\moc{N2N} & (n,2n) reactions \\ +\moc{N3N} & (n,3n) reactions \\ +\moc{FISS} & Fission cross section \\ +\moc{CHI} & Steady-state fission spectrum \\ +\moc{NUFI} & $\nu\Sigma_{\rm f}$ cross sections \\ +\moc{KAFI} & $\kappa\Sigma_{\rm f}$ cross sections \\ +\moc{LEAK} & $B^2$ times the leakage coefficient \\ +\moc{DIFF} & Scattering cross section for each available Legendre order.\\ +& These cross sections {\sl not} multiply by the $2\ell+1$ factor.\\ +\moc{SCAT} & Transfer cross section matrices for each available Legendre order.\\ +& These cross sections are multiply by the $2\ell+1$ factor.\\ +\moc{CORR} & Transport correction. Note that the cross sections stored in the \\ +& {\sc apex} are {\sl not} transport corrected.\\ +\moc{STRD} & STRD cross sections used to compute the diffusion coefficients \\ +\moc{NP} & (n,p) production cross sections \\ +\moc{NT} & (n,t) production cross sections \\ +\moc{NA} & (n,$\alpha$) production cross sections \\ +\hline +\end{tabular} +\end{center} + +\end{ListeDeDescription} + +\subsubsection{Modification data input for module {\tt APX:}}\label{sect:descsapx2} + +\vskip -0.8cm + +\begin{DataStructure}{Structure \dstr{apex\_data2}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +$[[$ \dusa{parkey} \dusa{value} $]]$ \\ +$[$ \moc{ORIG} \dusa{orig} $]$ \\ +$[$ \moc{EQUI} \dusa{hequi} $]$ \\ +$[$ \moc{SET} \dusa{xtr} $\{$ \moc{S} $|$ \moc{DAY} $|$ \moc{YEAR} $\}$ $]$ \\ +$[$ \moc{ICAL} {\tt >>} \dusa{ical} {\tt <<} $]$ \\ +{\tt ;} +\end{DataStructure} + +\goodbreak +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] key word used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +APX:}. =0 for no print; =1 for minimum printing (default value). + +\item[\dusa{parkey}] {\tt character*4} keyword associated to a user-defined global +parameter. + +\item[\dusa{value}] floating-point, integer or {\tt character*12} value of a user-defined +global parameter. + +\item[\moc{ORIG}] keyword used to define the father node in the global parameter tree. By +default, the index of the previous elementary calculation is used. + +\item[\dusa{orig}] index of the elementary calculation associated to the father node in the +global parameter tree. + +\item[\moc{EQUI}] keyword used to define the name of a SPH equivalence factor set. By +default, \dusa{hequi}$=$ {\tt 'default'}. + +\item[\dusa{hequi}] \texttt{character*80} name of a SPH equivalence factor set. + +\item[\moc{SET}] keyword used to recover the flux normalization factor already +stored on \dusa{BRNNAM} from a sub-directory corresponding to a specific time. + +\item[\dusa{xtr}] time associated with the current flux calculation. The +name of the sub-directory where this information is stored will be given by +`{\tt DEPL-DAT}'//{\tt CNN} where {\tt CNN} is a {\tt character*4} variable +defined by {\tt WRITE(CNN,'(I4)') INN} where {\tt INN} is an index associated +with the time \dusa{xtr}. + +\item[\moc{S}] keyword to specify that the time is given in seconds. + +\item[\moc{DAY}] keyword to specify that the time is given in days. + +\item[\moc{YEAR}] keyword to specify that the time is given in years. + +\item[\moc{ICAL}] keyword used to recover the last calculation index. + +\item[\dusa{ical}] \texttt{character*12} CLE-2000 variable name in which the last calculation index will be placed. + +\end{ListeDeDescription} + +\subsubsection{Modification (catenate) data input for module {\tt APX:}}\label{sect:descsapx3} + +\vskip -0.5cm + +\begin{DataStructure}{Structure \dstr{apex\_data3}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +$[$ \moc{ORIG} \dusa{orig} $]$ \\ +$[[$ \dusa{parkey} \dusa{value} $]]$ \\ +$[$ \moc{WARNING-ONLY} $]$ \\ +{\tt ;} +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{EDIT}] keyword used to set \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in module {\tt +APX:}. =0 for no print; =1 for minimum printing (default value). + +\item[\dusa{parkey}] {\tt character*4} .keyword associated to a +global parameter that is specific to \dusa{APXNAM} (not defined in \dusa{APXRHS}). + +\item[\dusa{value}] floating-point, integer or {\tt character*12} value of a user-defined +global parameter. + +\item[\moc{ORIG}] keyword used to define the father node in the parameter tree. By +default, the index of the previous elementary calculation is used. + +\item[\dusa{orig}] index of the elementary calculation associated to the father node in the +parameter tree. + +\item[\moc{WARNING-ONLY}] This option is useful if an elementary calculation in \dusa{APXRHS} +is already present in \dusa{APXNAM}. If this keyword is set, a warning is send and the \dusa{APXNAM} values +are kept, otherwise the run is aborted (default). + +\end{ListeDeDescription} + +\subsubsection{Specification of SPH, discontinuity factor and albedo information}\label{sect:df_apx} + +SPH factors for different equivalence types are written in group {\tt MEDIA\_SPH} included in each state point of the Apex file. + +\vskip -0.15cm + +\begin{DescriptionEnregistrement}{Group /calc\_id/xs\_iq/MEDIA\_SPH of the Apex file}{7.5cm} +\label{tabl:tabiso202a} +\RealEnr + {\{hequi\}}{$N_{\rm grp}$}{$1$} + {SPH factors in zone {\tt iq}. \{hequi\} is a user-defined name corresponding to a specific type of SPH equivalence.} +\end{DescriptionEnregistrement} + +\noindent where $N_{\rm grp}$ is the number of energy groups. A Dragon mixture is a zone in Apex terminology. Discontinuity factors and +equivalent albedos are written in group {\tt miscellaneous} included in each state point of the Apex file. +If the Apex file contains a unique output zone, suffix {\tt \_iq} can be omitted. Specification of some datasets are slightly modified to hold this new information: + +\vskip -0.15cm + +\begin{DescriptionEnregistrement}{Group /calc\_id/miscellaneous/ of the Apex file}{7.5cm} +\label{tabl:tabiso202a} +\RealEnr + {\{hadf\}}{$N_{\rm surf}\times N_{\rm grp}$}{$1$} + {Discontinuity factors $F^{\rm d}_{{\tt iq},b,g}$ on external surfaces $b\le N_{\rm surf}$ obtained with a nodal equivalence procedure within zone {\tt iq}.} +\OptRealEnr + {ALBEDO}{$N_{\rm alb}\times N_{\rm grp}$}{$N_{\rm alb}\ge 1$}{1} + {Multigroup albedos $\beta_{a,g}$ obtained with a nodal equivalence procedure.} +\end{DescriptionEnregistrement} + +\vskip -0.3cm + +If the Apex file contains a unique output zone, {\sl \{hadf\}} is set to ``{\tt ADF}''. Otherwise, the name of the discontinuity +factor set {\sl \{hadf\}} is composed using the following FORTRAN instruction: + \begin{displaymath} + \mathtt{WRITE(}\mathsf{HADF}\mathtt{,'(3HADF,I8)')} \ iq + \end{displaymath} +\noindent where {\tt iq} $\le N_{\rm mil}$. + +\clearpage |
