diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE335/Section3.04_sybil.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE335/Section3.04_sybil.tex')
| -rw-r--r-- | doc/IGE335/Section3.04_sybil.tex | 200 |
1 files changed, 200 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.04_sybil.tex b/doc/IGE335/Section3.04_sybil.tex new file mode 100644 index 0000000..483b3dc --- /dev/null +++ b/doc/IGE335/Section3.04_sybil.tex @@ -0,0 +1,200 @@ +\subsubsection{The {\tt SYBILT:} tracking module}\label{sect:SYBILData} + +The {\tt SYBILT:} module provides: {\sl (1)} an implementation of the collision probability (PIJ) method in 1D and pincell geometries (both Cartesian and hexagonal) +or {\sl (2)} an implementation of the interface current (IC) method in 2D assembly geometries. The geometries that can be treated by the module \moc{SYBILT:} are + +\begin{enumerate} + +\item The homogeneous geometry \moc{HOMOGE}. + +\item The one-dimensional geometries \moc{SPHERE}, \moc{TUBE} and \moc{CAR1D}.\cite{ALCOL} + +\item The two-dimensional geometries \moc{CAR2D} and \moc{HEX} including +respectively \moc{CARCEL} and \moc{HEXCEL} sub-geometries as well as +\moc{VIRTUAL} +sub-geometries. + +\item $S_{ij}$--type two-dimensional non-standard geometries.\cite{Apollo} + +\item The double heterogeneity option.\cite{BIHET} + +\end{enumerate} + +The calling specification for this module is: + +\begin{DataStructure}{Structure \dstr{SYBILT:}} +\dusa{TRKNAM} +\moc{:=} \moc{SYBILT:} $[$ \dusa{TRKNAM} $]$ +\dusa{GEONAM} \moc{::} \dstr{desctrack} \dstr{descsybil} +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\dusa{TRKNAM}] {\tt character*12} name of the \dds{tracking} data +structure that will contain region volume and surface area vectors in +addition to region identification pointers and other tracking information. +If \dusa{TRKNAM} also appears on the RHS, the previous tracking +parameters will be applied by default on the current geometry. + +\item[\dusa{GEONAM}] {\tt character*12} name of the \dds{geometry} data +structure. + +\item[\dstr{desctrack}] structure describing the general tracking data (see +\Sect{TRKData}) + +\item[\dstr{descsybil}] structure describing the transport tracking data +specific to \moc{SYBILT:}. + +\end{ListeDeDescription} + +\vskip 0.15cm + +The \moc{SYBILT:} specific tracking data in \dstr{descsybil} is defined as + +\begin{DataStructure}{Structure \dstr{descsybil}} +$[$ \moc{MAXJ} \dusa{maxcur} $]$ $[$ \moc{MAXZ} \dusa{maxint} $]$ \\ +$[$ \moc{HALT} $]$ \\ +$[$ \moc{QUA1} \dusa{iqua1} $]$ $[$ \moc{QUA2} \dusa{iqua2} +\dusa{nsegment} $]$ $[$ $\{$ \moc{EQW} $|$ \moc{GAUS} $\}$ $]$ \\ +$[$ $\{$ \moc{ROTH} $|$ \moc{ROT+} $|$ \moc{DP00} $|$ \moc{DP01} $\}$ $]$ \\ +$[$ $\{$ \moc{WIGN} $|$ \moc{ASKE} $|$ \moc{SANC} $\}$ $]$ $[$ \moc{LIGN} $]$ +$[$ \moc{RECT} $]$ \\ +$[$ \moc{EPSJ} \dusa{epsj} $]$ \\ +$[~[$ \moc{QUAB} \dusa{iquab} $]~[~\{$ \moc{SAPO} $|$ \moc{HEBE} $|$ \moc{SLSI} $[$ \dusa{frtm} $]~\}~]~]$ \\ +{\tt ;} +\end{DataStructure} + +\noindent where + +\begin{ListeDeDescription}{mmmmmmm} + +\item[\moc{MAXJ}] keyword to specify the maximum number of interface currents +surrounding the blocks in the calculations. + +\item[\dusa{maxcur}] the maximum number of interface currents surrounding the +blocks. The default value is \dusa{maxcur}=max(18,4$\times$\dusa{maxreg}) for the +\moc{SYBILT:} module. + +\item[\moc{MAXZ}] keyword to specify the maximum amount of memory required to +store the integration lines. An insufficiently large value can lead to an +execution failure (core dump). + +\item[\dusa{maxint}] the maximum amount of memory required to store the +integration lines. The default value is \dusa{maxint}=10000. + +\item[\moc{HALT}] keyword to specify that the program is to be stopped at the +end of the geometry calculations. This option permits the geometry inputs to be +checked, the number of blocks and interface currents to be calculated, and a +conservative estimate of the memory required for storing the tracks to be made +for mixed geometries. + +\item[\moc{QUA1}] keyword to specify the one-dimensional integration +parameters. + +\item[\dusa{iqua1}] number of basis points for the angular integration of the +blocks in a one-dimensional geometry. This parameter is not used for +\moc{CAR1D} geometries. If a Gauss-Legendre or Gauss-Jacobi quadrature is used, +the values of \dusa{iqua1} allowed are: 1 to 20, 24, 28, 32 or 64. The default +value is \dusa{iqua1}=5. + +\item[\moc{QUA2}] keyword to specify the two-dimensional integration +parameters. + +\item[\dusa{iqua2}] number of basis points for the angular integration of the +blocks in a two-dimensional geometry appearing during assembly +calculations. If a Gauss-Legendre or Gauss-Jacobi formula is used the values +allowed for \dusa{iqua2} are: 1 to 20, 24, 28, 32 or 64. The default value is +\dusa{iqua2}=3 and represents the number of angles in ($0,\pi/4$) for +Cartesian geometries and ($0,\pi/6$) for hexagonal geometries. + +\item[\dusa{nsegment}] number of basis points for the spatial integration of +the blocks in a two-dimensional geometry appearing during assembly +calculations. The values of \dusa{nsegment} allowed are: 1 to 10. The default +value is \dusa{nsegment}=3. + +\item[\moc{EQW}] keyword to specify the use of equal-weight quadrature. + +\item[\moc{GAUS}] keyword to specify the use of the Gauss-Legendre or the +Gauss-Jacobi quadrature. This is the default option. + +\item[\moc{ROTH}] keyword to specify that the isotropic ($DP_{0}$) components +of the inter-cell current is used with the incoming current being averaged over +all the faces surrounding a cell. The global collision matrix is calculated in a +annular model. Only used when 2--d assembly of cells are considered. + +\item[\moc{ROT+}] keyword to specify that the isotropic ($DP_{0}$) components +of the inter-cell current is used. The global collision matrix is calculated in +a annular model. Only used when 2--d assembly of cells are considered. + +\item[\moc{DP00}] keyword to specify that the isotropic ($DP_{0}$) components +of the inter-cell current is used. The global collision matrix are computed +explicitly. Only used when 2--d assembly of cells are considered. + +\item[\moc{DP01}] keyword to specify that the linearly anisotropic ($DP_{1}$) +components of the inter-cell current are used. This hypothesis implies 12 +currents per cell in a cartesian geometry and 18 currents per cell for an +hexagonal geometry. Linearly anisotropic reflection is used. Only used when 2--d +assembly of cells are considered. + +\item[\moc{WIGN}] keyword to specify the use of a {\sl Wigner} cylinderization +which preserves the volume of the external crown. This applies only in cases +where the external surface is annular using the \moc{ROTH} or \moc{ROT+} +options. Only used when 2--d assembly of cells are considered. Note that an +assembly of rectangular cells having unequal volumes cannot use a {\sl Wigner} +cylinderization. + +\item[\moc{ASKE}] keyword to specify the use of an {\sl Askew} cylinderization +which preserves both the external surface of the cells and the material balance +of the external crown (by a modification of its concentration). This applies +only in cases where the external surface is annular using the \moc{ROTH} or +\moc{ROT+} options. Only used when 2--d assembly of cells are considered. Note +that an assembly of rectangular cells having unequal volumes can use an +{\sl Askew} cylinderization. + +\item[\moc{SANC}] keyword to specify the use of a {\sl Sanchez} cylinderization. +This model uses a {\sl Wigner} cylinderization for computing the collision $P_{ij}$ +and leakage $P_{iS}$ probabilities. However, the reciprocity and conservation +relations used to compute the incoming $P_{Sj}$ and transmission $P_{SS}$ +probabilities are defined in the rectangular cell (with the exact +surface).\cite{SANCHEZ} +This applies where the external surface is annular using the \moc{ROTH} or +\moc{ROT+} options. Only used when 2--d assembly of cells are considered. Note +that an assembly of rectangular cells having unequal volumes can use a +{\sl Sanchez} cylinderization. This is the default option. + +\item[\moc{LIGN}] keyword to specify that all the integration lines are to be +printed. This option should only be used when absolutely necessary because it +generates a rather large amount of output. Only used when 2--d assembly of cells +are considered. + +\item[\moc{RECT}] keyword to specify that square cells are to be treated as if +they were rectangular cells, with the inherent loss in performance that this +entails. This option is of purely academic interest. + +\item[\moc{EPSJ}] keyword to specify the stopping criterion for the flux-current iterations of the +interface current method in case the {\tt ARM} keyword is set in the {\tt ASM:} module or in +a resonance self-shielding module ({\tt SHI:}, {\tt USS:}, etc.). + +\item[\dusa{epsj}] the stopping criterion value. The default value is \dusa{epsj} $= 0.5 \times 10^{-5}$. + +\item[\moc{QUAB}] keyword to specify the number of basis point for the +numerical integration of each micro-structure in cases involving double +heterogeneity (Bihet). + +\item[\dusa{iquab}] the number of basis point for the numerical integration of +the collision probabilities in the micro-volumes using the Gauss-Jacobi +formula. The values permitted are: 1 to 20, 24, 28, 32 or 64. The default value +is \dusa{iquab}=5. If \dusa{iquab} is negative, its absolute value will be used in the She-Liu-Shi approach to determine the +split level in the tracking used to compute the probability collisions. + +\item[\moc{SAPO}] use the Sanchez-Pomraning double-heterogeneity model.\cite{sapo} + +\item[\moc{HEBE}] use the Hebert double-heterogeneity model (default option).\cite{BIHET} + +\item[\moc{SLSI}] use the She-Liu-Shi double-heterogeneity model without shadow effect.\cite{She2017} + +\item[\dusa{frtm}] the minimum microstructure volume fraction used to compute the size of the equivalent cylinder in She-Liu-Shi approach. The default value is \dusa{frtm} $=0.05$. + +\end{ListeDeDescription} +\eject |
