diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /doc/IGE335/Section3.03.tex | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'doc/IGE335/Section3.03.tex')
| -rw-r--r-- | doc/IGE335/Section3.03.tex | 1515 |
1 files changed, 1515 insertions, 0 deletions
diff --git a/doc/IGE335/Section3.03.tex b/doc/IGE335/Section3.03.tex new file mode 100644 index 0000000..cd63ae7 --- /dev/null +++ b/doc/IGE335/Section3.03.tex @@ -0,0 +1,1515 @@ +\subsection{The {\tt GEO:} module}\label{sect:GEOData} + +The \moc{GEO:} module is used to create or modify a geometry. The geometry +definition module in DRAGON permits all the characteristics (coordinates, +region mixture and boundary conditions) of a simple or complex +geometry to be specified. The method used to specify the geometry is independent +of the discretization module to be used subsequently. Each geometry is stored in +the form of a \dds{geometry} data structure under its given name. It is +always possible to modify an existing geometry or copy it under a new name. +The calling specifications are: + +\begin{DataStructure}{Structure \dstr{GEO:}} +$\{$ \\ +\hskip 0.3cm \dusa{GEONAM} \moc{:=} \moc{GEO:} $\{$ \dusa{GEONAM} $|$ \dusa{OLDGEO} $\}$ +\moc{::} \dstr{descgcnt} \\ + $|$ \\ +\hskip 0.3cm \dusa{GEONAM} \moc{:=} \moc{GEO:} \moc{::} \dstr{descgtyp} \dstr{descgcnt} \\ + $\}$ +\end{DataStructure} + +\noindent + +\noindent where +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\dusa{GEONAM}] {\tt character*12} name of the \dds{geometry} created or +modified. + +\item[\dusa{OLDGEO}] {\tt character*12} name of a read-only \dds{geometry}. +The type and all the characteristics of \dusa{OLDGEO} will be copied onto \dusa{GEONAM} +before this later geometry is modified. + +\item[\dstr{descgtyp}] structure describing the geometry type of +\dusa{GEONAM} (see \Sect{descgeo}). + +\item[\dstr{descgcnt}] structure describing the characteristics of a geometry +(see \Sect{descgeo}). + +\end{ListeDeDescription} + +\subsubsection{Data input for module {\tt GEO:}}\label{sect:descgeo} + +Structures \dstr{descgtyp} and \dstr{descgcnt} are used to define respectively +the type of geometry that will be define and the contents of this geometry +(dimensions, materials, boundary conditions). The module \moc{GEO:} can be +recursively called from +\dstr{descgcnt} as an embedded module, in order to define sub-geometries: + +\begin{DataStructure}{Structure \dstr{descgtyp}} +$\{$ \moc{VIRTUAL} $|$ \\ +\moc{HOMOGE} $|$\\ +\moc{SPHERE} \dusa{lr} $|$ \\ +\moc{CAR1D} \dusa{lx} $|$ \\ +\moc{CAR2D} \dusa{lx} \dusa{ly} $|$\\ +\moc{CAR3D} \dusa{lx} \dusa{ly} \dusa{lz} $|$ \\ +\moc{TUBE} \dusa{lr} $[$ \dusa{lx} \dusa{ly} $]$ $|$\\ +\moc{TUBEX} \dusa{lr} $\{$ \dusa{lx} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$\\ +\moc{TUBEY} \dusa{lr} $\{$ \dusa{ly} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$\\ +\moc{TUBEZ} \dusa{lr} $\{$ \dusa{lz} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\ +\moc{RTHETA} \dusa{lr} \dusa{lz} $|$ \\ +\moc{HEX} \dusa{lh} $|$ \\ +\moc{HEXZ} \dusa{lh} \dusa{lz} $|$ \\ +\moc{HEXT} \dusa{nhr} $|$ \\ +\moc{HEXTZ} \dusa{nhr} \dusa{lz} $|$ \\ +\moc{CARCEL} \dusa{lr} $[$ \dusa{lx} \dusa{ly} $]$ $|$\\ +\moc{CARCELX} \dusa{lr} $\{$ \dusa{lx} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\ +\moc{CARCELY} \dusa{lr} $\{$ \dusa{ly} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\ +\moc{CARCELZ} \dusa{lr} $\{$ \dusa{lz} $|$ \dusa{lx} \dusa{ly} \dusa{lz} $\}$ $|$ \\ +\moc{HEXCEL} \dusa{lr} $|$ \\ +\moc{HEXCELZ} \dusa{lr} \dusa{lz} $|$ \\ +\moc{HEXTCEL} \dusa{lr} \dusa{nhr}$|$ \\ +\moc{HEXTCELZ} \dusa{lr} \dusa{nhr} \dusa{lz} $|$ \\ +\moc{GROUP} \dusa{lp} $\}$ +\end{DataStructure} + +\begin{DataStructure}{Structure \dstr{descgcnt}} +$[$ \moc{EDIT} \dusa{iprint} $]$ \\ +\dstr{descBC} \\ +\dstr{descSP} \\ +\dstr{descPP} \\ +\dstr{descDH} \\ +\dstr{descSIJ} \\ +$[[$ \moc{:::} \dusa{SUBGEO} \moc{:=} \moc{GEO:} $\{$ \dstr{descgtyp} $|$ +\dusa{SUBGEO} $|$ +\dusa{OLDGEO} $\}$ \dstr{descgcnt}$]]$ \\ +\moc{;} +\end{DataStructure} + +\noindent +where + +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{VIRTUAL}] keyword to specify that a virtual geometry description +follows. This type of geometry is used to complete an assembly that has +irregular boundaries. + +\item[\moc{HOMOGE}] keyword to specify that a infinite homogeneous geometry +description follows. + +\item[\moc{SPHERE}] keyword to specify that a spherical geometry (concentric +spheres) description follows. + +\item[\moc{CAR1D}] keyword to specify that a one dimensional plane geometry +(infinite slab) description follows. + +\item[\moc{CAR2D}] keyword to specify that a two-dimensional Cartesian +geometry description follows. + +\item[\moc{CAR3D}] keyword to specify that a three-dimensional Cartesian +geometry description follows. + +\item[\moc{TUBE}] keyword to specify that a cylindrical geometry (infinite +tubes or cylinders) description follows. This geometry can contain an imbedded $X-Y$ Cartesian mesh. + +\item[\moc{TUBEX}] keyword to specify that a polar $R-X$ cylindrical geometry +description follows. This geometry can contain an imbedded $Y-Z$ Cartesian mesh. + +\item[\moc{TUBEY}] keyword to specify that a polar $R-Y$ cylindrical geometry +description follows. This geometry can contain an imbedded $Z-X$ Cartesian mesh. + +\item[\moc{TUBEZ}] keyword to specify that a polar $R-Z$ cylindrical geometry +description follows. This geometry can contain an imbedded $X-Y$ Cartesian mesh. + +\item[\moc{RTHETA}] keyword to specify that a polar geometry ($R-\theta$) +description follows. + +\item[\moc{HEX}] keyword to specify that a two-dimensional hexagonal geometry +description follows. + +\item[\moc{HEXZ}] keyword to specify that a three-dimensional hexagonal +geometry description follows. + +\item[\moc{HEXT}] keyword to specify a single 2-D hexagonal cell geometry having a triangular mesh. This option is only supported by the \moc{NXT:} tracking module (see \Sect{TRKData}). + +\item[\moc{HEXTZ}] keyword to specify a single $Z$ directed 3-D hexagonal cell geometry having a triangular mesh (plane $X-Y$). This option is only supported by the \moc{NXT:} tracking module (see \Sect{TRKData}). + +\item[\moc{CARCEL}] keyword to specify that a two-dimensional mixed Cartesian +cell (concentric tubes surrounded by a rectangle) description follows. The rectangle can now be +subdivided into a fine mesh when the \moc{EXCELT:} modules is used. + +\item[\moc{CARCELX}] keyword to specify that a three-dimensional mixed +Cartesian cell with tubes oriented along the $X-$axis description follows. The three-dimensional +Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:} +module is used. + +\item[\moc{CARCELY}] keyword to specify that a three-dimensional mixed +Cartesian cell with tubes oriented along the $Y-$axis description follows. The three-dimensional +Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:} +module is used. + +\item[\moc{CARCELZ}] keyword to specify that a three-dimensional mixed +Cartesian cell with tubes oriented along the $Z-$axis description follows. The three-dimensional +Cartesian cell can now be subdivided into a fine mesh when the \moc{EXCELT:} +module is used. + +\item[\moc{HEXCEL}] keyword to specify that a two-dimensional mixed hexagonal cell (concentric tubes surrounded by a hexagon) description follows. + +\item[\moc{HEXCELZ}] keyword to specify that a three-dimensional mixed hexagonal cell with tubes oriented along the $Z-$axis description follows. + +\item[\moc{HEXTCEL}] keyword to specify a single 2-D hexagonal cell geometry having a triangular mesh and containing concentric annular regions. + +\item[\moc{HEXTCELZ}] keyword to specify a single $Z$ directed 3-D hexagonal cell geometry a triangular mesh and containing concentric $Z$ directed cylinders. + +\item[\moc{GROUP}] keyword to specify that a {\sl do-it-yourself} type geometry +description follows. + +\item[\dusa{lx}] number of subdivisions along the $X-$axis (before +mesh-splitting). + +\item[\dusa{ly}] number of subdivisions along the $Y-$axis (before +mesh-splitting). + +\item[\dusa{lz}] number of subdivisions along the $Z-$axis (before +mesh-splitting). + +\item[\dusa{lr}] number of cylinders or spherical shells (before +mesh-splitting). + +\item[\dusa{lh}] number of hexagons in an axial plane (including the virtual +hexagon). + +\item[\dusa{nhr}] number of concentric hexagons in a \moc{HEXT}, \moc{HEXTZ}, \moc{HEXTCEL} or \moc{HEXTCELZ} cell (see \Fig{GeoHEXT4}). This will lead to an hexagon subdivided into $6N^{2}$ identical trangles. + +\begin{figure}[h!] +\begin{center} +\parbox{9.0cm}{\epsfxsize=9cm \epsffile{GeoHEXT4.eps}} +\parbox{14cm}{\caption{Hexagonal geometry with triangular mesh containing 4 concentric hexagon}\label{fig:GeoHEXT4}} +\end{center} +\end{figure} + +\item[\dusa{lp}] number of types of cells (number of cells inside which a distinct flux will be calculated) for a \textsl{do-it-yourself} type geometry. + +\item[\moc{EDIT}] keyword used to modify the print level \dusa{iprint}. + +\item[\dusa{iprint}] index used to control the printing in this module. +It must be set to 0 if no printing on the output file is required, to 1 for +minimum printing (fixed default value) and to 2 for printing the geometry state +vector. + +\item[\dstr{descBC}] structure allowing the boundary conditions surrounding +the geometry to be treated (see \Sect{descBC}). + +\item[\dstr{descSP}] structure allowing the coordinates of a geometry to be +described (see \Sect{descSP}). + +\item[\dstr{descPP}] structure allowing material mixtures to be associated +with a geometry (see \Sect{descPP}). + +\item[\dstr{descDH}] structure used to specify double-heterogeneity data (see \Sect{descDH}). + +\item[\dstr{descSIJ}] structure used to specify the properties of {\sl do-it-yourself} +geometries (see \Sect{descSIJ}). + +\item[\dusa{SUBGEO}] {\tt character*12} name of the directory that will +contain the sub-geometry. + +\item[\dusa{OLDGEO}] {\tt character*12} name of a parallel directory +containing an existing sub-geometry. The type and all the characteristics of +\dusa{OLDGEO} will be copied onto \dusa{SUBGEO}. + +\end{ListeDeDescription} + +Note that all the geometry described above are called {\sl pure geometry} when +they do not contain sub-geometry. When they do contain sub-geometry they will be +called {\sl composite geometry}. + +\goodbreak +\subsubsection{Boundary conditions}\label{sect:descBC} + +The inputs corresponding to the \dstr{descBC} structure are the following: + +\begin{DataStructure}{Structure \dstr{descBC}} +$[$ \moc{X-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ +\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} +$|$ \moc{PI/2} $|$ \moc{PI} \\ +~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\ +$[$ \moc{X+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ +\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} +$|$ \moc{PI} \\ +~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\ +$[$ \moc{Y-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ +\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} +$|$ \moc{PI/2} $|$ \moc{PI} \\ +~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\ +$[$ \moc{Y+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{DIAG} $|$ \moc{TRAN} $|$ +\moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} +$|$ \moc{PI} \\ +~~~~~~~~ $|$ \moc{CYLI} $|$ \moc{ACYL} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $\}$ $]$ \\ +$[$ \moc{Z-} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ +\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\ +$[$ \moc{Z+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SSYM} $|$ \moc{TRAN} $|$ \moc{SYME} $|$ +\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\ +$[$ \moc{R+} $\{$ \moc{VOID} $|$ \moc{REFL} $|$ +\moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{ZERO} $\}$ $]$ \\ +$[$ \moc{HBC} $\{$ \moc{S30} $|$ \moc{SA60} $|$ \moc{SB60} $|$ \moc{S90} $|$ +\moc{R120} $|$ \moc{R180} $|$ \moc{SA180} $|$ \moc{SB180} $|$ \moc{COMPLETE} $\}$ \\ +$\{$ \moc{VOID} $|$ \moc{REFL} $|$ \moc{SYME} $|$ \moc{ALBE} $\{$ \dusa{albedo} $|$ \dusa{icode} $\}$ $|$ \moc{TRAN} $|$ \moc{ZERO} $\}$ $]$ \\ +$[$ \moc{RADS} $[$ \moc{ANG} $]$ \dusa{nrads} (\dusa{xrad}(ir), \dusa{rrad}(ir) $[$, \dusa{ang}(ir) $]$, ir=1,nrads ) $]$ +\end{DataStructure} + +\noindent +where: + +\begin{ListeDeDescription}{mmmmm} + +\item[\moc{X-}/\moc{X+}] keyword to specify the boundary conditions associated with the +negative or positive $X$ surface of a Cartesian geometry. + +\item[\moc{Y-}/\moc{Y+}] keyword to specify the boundary conditions associated with the +negative or positive $Y$ surface of a Cartesian geometry. + +\item[\moc{Z-}/\moc{Z+}] keyword to specify the boundary conditions associated with the +negative or positive $Z$ surface of a Cartesian geometry. + +\item[\moc{R+}] keyword to specify the boundary conditions associated with the +outer surface of a cylindrical or spherical geometry. + +\item[\moc{HBC}] keyword to specify the boundary conditions associated with +the outer surface of an hexagonal geometry. + +\item[\moc{VOID}] keyword to specify that the surface under consideration has +zero re-entrant angular flux. This side is an external surface of the domain. + +\item[\moc{REFL}] keyword to specify that the surface under consideration has a reflective boundary condition. In +most DRAGON calculations, this implies an isotropic or white boundary conditions. This condition defines a specular (or cyclic) +boundary condition in case where the tracking is performed with module {\tt SALT:}. A Cartesian geometry is never +unfolded to take into account a \moc{REFL} boundary condition. + +\item[\moc{SSYM}] keyword to specify that the surface under consideration has a specular (or mirror) reflective boundary condition. The +main difference between \moc{REFL} and \moc{SSYM} is that for \moc{SSYM} the cell may be unfolded to take +into account the reflection at the boundary. + +\item[\moc{DIAG}] keyword to specify that the Cartesian surface under +consideration has the same properties as that associated with a diagonal through +the geometry (see \Fig{cartebc}). Note that two and only two \moc{DIAG} surfaces must be specified. +The diagonal symmetry is only permitted for square geometry and in the following +combinations: + +\begin{verbatim} +X+ DIAG Y- DIAG +\end{verbatim} + +\noindent +or + +\begin{verbatim} +X- DIAG Y+ DIAG +\end{verbatim} + +\item[\moc{TRAN}] keyword to specify that the surface under consideration is +connected to the opposite surface of a Cartesian domain (see \Fig{cartebcr}) or to +the opposite surface of a full hexagon. This option provides +the facility to treat an infinite geometry with translation symmetry. The only +combinations of translational symmetry permitted are: + +\begin{itemize} +\item Translation along the $X-$axis + +\begin{verbatim} +X- TRAN X+ TRAN +\end{verbatim} + +\item Translation along the $Y-$axis + +\begin{verbatim} +Y- TRAN Y+ TRAN +\end{verbatim} + +\item Translation along the $Z-$axis + +\begin{verbatim} +Z- TRAN Z+ TRAN +\end{verbatim} + +\item Hexagonal translation + +\begin{verbatim} +HBC COMPLETE TRAN +\end{verbatim} + +\end{itemize} + +\item[\moc{SYME}] keyword to specify that the Cartesian surface under +consideration is virtual and that a reflection symmetry is associated with the +adequately directed axis running through the center of the cells closest to this +surface (see \Fig{cartebcr}). Only the hexagonal geometries \moc{S30} and \moc{SA60} can be +surrounded by a \moc{SYME} boundary condition if a specular condition +is to be applied on this boundary. + +\item[\moc{ALBE}] keyword to specify that the surface under consideration has +an arbitrary albedo. This side is an external surface of the domain. + +\item[\dusa{albedo}] geometric albedo corresponding to the boundary condition +\moc{ALBE} (\dusa{albedo}$>$0.0). The condition ``{\tt ALBE 1.0}" is used to define an isotropic (or white) +boundary condition in case where the tracking is performed with module {\tt SALT:}. The default value is +\dusa{albedo}$=$0.0. + +\item[\dusa{icode}] index of a physical albedo corresponding to the boundary +condition \moc{ALBE}. The numerical values of the physical albedo are supplied +by the operator \moc{MAC:} (see \Sect{MACData}). + +\item[\moc{ZERO}] keyword to specify that the surface under consideration has a +zero-flux boundary condition. This side is an external surface of the domain. + +\item[\moc{PI/2}] keyword to specify that the surface under consideration has a +$\pi$/2 rotational symmetry (see \Fig{cartebcr}). The only $\pi$/2 symmetry permitted is related to +sides ({\tt X-} and {\tt Y-}). This condition can be combined with a translation +boundary condition:({\tt PI/2 X- TRAN X+}) and/or ({\tt PI/2 Y- TRAN Y+}) (see \Fig{cartebct}). + +\item[\moc{PI}] keyword to specify that the surface under consideration has a +$\pi$ rotational symmetry (see \Fig{cartebcr}). This keyword is useful for representing a +Cartesian checkerboard pattern as shown in Fig.~\ref{fig:cartebcdam}. + +\item[\moc{CYLI}] the side under consideration has a zero incoming current boundary condition +with a circular correction applied on the Cartesian boundary. This option is only available in +the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations. + +\item[\moc{ACYL}] the side under consideration has an arbitrary albedo with a circular correction +applied on the Cartesian boundary. This option is only available in +the $X$--$Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries defined for TRIVAC full--core calculations. + +\item[\moc{S30}] keyword to specify an hexagonal symmetry of one twelfth of an +assembly (see \Fig{s30}). + +\item[\moc{SA60}] keyword to specify an hexagonal symmetry of one sixth of an +assembly of type A (see \Fig{s30}). + +\item[\moc{SB60}] keyword to specify an hexagonal symmetry of one sixth of an +assembly of type B (see \Fig{sb60}). + +\item[\moc{S90}] keyword to specify an hexagonal symmetry of one quarter of an +assembly (see \Fig{sb60}). + +\item[\moc{R120}] keyword to specify a rotation symmetry of one third of an +assembly (see \Fig{r120}). + +\item[\moc{R180}] keyword to specify a rotation symmetry of a half assembly +(see \Fig{r120}). + +\item[\moc{SA180}] keyword to specify an hexagonal symmetry of half a type A +assembly (see \Fig{sa180}). + +\item[\moc{SB180}] keyword to specify an hexagonal symmetry of half a type B +assembly (see \Fig{sb180}). + +\item[\moc{COMPLETE}] keyword to specify a complete hexagonal assembly (see +\Fig{compl}). + +\item[\moc{RADS}] This key word is used to specify the cylindrical correction applied in the $X-Y$ plane for \moc{CAR2D} and \moc{CAR3D} geometries.\cite{roy} + +\item[\moc{ANG}] This key word allows the angle (see \Fig{corr}) +of the cylindrical notch to be set. By default, no notch is present. + +\item[\dusa{nrads}] Number of different corrections along the cylinder main axis (i.e. the $Z$ axis). + +\item[\dusa{xrad}(ir)] Coordinate of the $Z$ axis from which the correction is applied. + +\item[\dusa{rrad}(ir)] Radius of the real cylindrical boundary. + +\item[\dusa{ang}(ir)] Angle of the cylindrical notch. This data is given if and only if the key word \moc{ANG} is present. \dusa{ang}(ir) $= {\pi \over 2}$ by default (i.e. the correction is applied at every angle). + +\end{ListeDeDescription} +\goodbreak + +\begin{figure}[!] +\begin{center} +\epsfxsize=13cm +\centerline{ \epsffile{ebc.eps}} +\parbox{14cm}{\caption{Diagonal boundary conditions in Cartesian geometry}\label{fig:cartebc}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=15cm +\centerline{ \epsffile{ebcr.eps}} +\parbox{14cm}{\caption{Various boundary conditions in Cartesian geometry}\label{fig:cartebcr}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=10cm +\centerline{ \epsffile{ebct.eps}} +\parbox{14cm}{\caption{Translation/rotation boundary conditions in Cartesian geometry}\label{fig:cartebct}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=13cm +\centerline{ \epsffile{ebcdam.eps}} +\parbox{14cm}{\caption{Representing a checkerboard in Cartesian geometry}\label{fig:cartebcdam}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=15cm +\centerline{ \epsffile{Gs30.eps}} +\parbox{14cm}{\caption{Hexagonal geometries of type S30 and SA60}\label{fig:s30}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=15cm +\centerline{ \epsffile{Gsb60.eps}} +\parbox{14cm}{\caption{Hexagonal geometries of type SB60 and S90}\label{fig:sb60}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=12cm +\centerline{ \epsffile{Gr120.eps}} +\parbox{14cm}{\caption{Hexagonal geometries of type R120 and R180}\label{fig:r120}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=5cm +\centerline{ \epsffile{Gsa180.eps}} +\parbox{14cm}{\caption{Hexagonal geometry of type SA180}\label{fig:sa180}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=11cm +\centerline{ \epsffile{Gsb180.eps}} +\parbox{14cm}{\caption{Hexagonal geometry of type SB180}\label{fig:sb180}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=10cm +\centerline{ \epsffile{Gcomplete.eps}} +\parbox{14cm}{\caption{Hexagonal geometry of type +COMPLETE}\label{fig:compl}} +\end{center} +\end{figure} + +\begin{figure}[!] +\begin{center} +\epsfxsize=6cm +\centerline{ \epsffile{Fig6.eps}} +\parbox{14cm}{\caption{Cylindrical correction in Cartesian geometry} +\label{fig:corr}} +\end{center} +\end{figure} + +\clearpage +\subsubsection{Spatial properties of geometry}\label{sect:descSP} + +The \dstr{descSP} structure has the following contents: +\begin{DataStructure}{Structure \dstr{descSP}} +$[$ \moc{MESHX} (\dusa{xxx}($i$), $i$=1,\dusa{lx}+1) $]$\\ +$[$ \moc{SPLITX} (\dusa{ispltx}($i$), $i$=1,\dusa{lx}) $]$\\ +$[$ \moc{MESHY} (\dusa{yyy}($i$), $i$=1,\dusa{ly}+1) $]$\\ +$[$ \moc{SPLITY} (\dusa{isplty}($i$), $i$=1,\dusa{ly}) $]$\\ +$[$ \moc{MESHZ} (\dusa{zzz}($i$), $i$=1,\dusa{lz}+1) $]$\\ +$[$ \moc{SPLITZ} (\dusa{ispltz}($i$), $i$=1,\dusa{lz}) $]$\\ +$[$ \moc{RADIUS} (\dusa{rrr}($i$), $i$=1,\dusa{lr}+1) $]$\\ +$[$ \moc{OFFCENTER} (\dusa{disxyz}($i$), $i$=1,3) $]$\\ +$[$ \moc{SPLITR} (\dusa{ispltr}($i$), $i$=1,\dusa{lr}) $]$\\ +$[$ \moc{SECT} \dusa{isect} $[$ \dusa{jsect} $]~]$\\ +$[$ \moc{SIDE} \dusa{sideh} $[$ \dusa{hexmsh} $]$ $]$\\ +$[~\{$ \moc{SPLITH} \dusa{isplth} $|$ \moc{SPLITL} \dusa{ispltl} $\}~]$\\ +$[$ $\{$ \moc{NPIN} \dusa{npins} \\ +\hspace{0.75cm} $\{$ $[$ \moc{RPIN} $\{$ \dusa{rpins} $|$ (\dusa{rpins}($i$), $i$=1, \dusa{npins}) $\}$ $]$ \\ +\hspace{1.0cm} $[$ \moc{APIN} $\{$ \dusa{apins} $|$ (\dusa{apins}($i$), $i$=1, \dusa{npins}) $\}$ $]$ $|$ \\ +\hspace{1.0cm} $[$ \moc{CPINX} (\dusa{xpins}($i$), $i$=1, \dusa{npins}) $]$ \\ +\hspace{1.0cm} $[$ \moc{CPINY} (\dusa{ypins}($i$), $i$=1, \dusa{npins}) $]$ \\ +\hspace{1.0cm} $[$ \moc{CPINZ} (\dusa{zpins}($i$), $i$=1, \dusa{npins}) $]$ $\}$\\ +\hspace{0.3cm}$|$ \moc{DPIN} \dusa{dpins} $\}$ $]$ +\end{DataStructure} + +\begin{ListeDeDescription}{mmmmmmmm} + +\item[\moc{MESHX}] keyword to specify the spatial mesh defining the regions along the $X-$axis. + +\item[\dusa{xxx}] array giving the $X$ limits (cm) of the regions making up the geometry. These values +must be given in order, from \moc{X-} to \moc{X+}. If the geometry presents a diagonal symmetry the same +data is also used along the $Y-$axis. + +\item[\moc{SPLITX}] keyword to specify that a mesh splitting of the geometry along the $X-$axis is to be +performed. + +\item[\dusa{ispltx}] array giving the number of zones that will be considered for each region along the +$X-$axis. If the geometry presents a diagonal symmetry this information is also used for the splitting +along the $Y-$axis. By default, +\dusa{ispltx}=1. + +\item[\moc{MESHY}] keyword to specify the spatial mesh defining the regions along the $Y-$axis. + +\item[\dusa{yyy}] array giving the $Y$ limits (cm) of the regions making up the geometry. These values +must be given in order, from \moc{Y-} to \moc{Y+}. + +\item[\moc{SPLITY}] keyword to specify that a mesh splitting of the geometry along the $Y-$axis is to be +performed. + +\item[\dusa{isplty}] array giving the number of zones that will be considered for each region along the +$Y-$axis. By default, +\dusa{isplty}=1 unless a diagonal symmetry is used in which case \dusa{isplty}$=$\dusa{ispltx}. + +\item[\moc{MESHZ}] keyword to specify the spatial mesh defining the regions along the $Z-$axis. + +\item[\dusa{zzz}] array giving the $Z$ limits (cm) of the regions making up the geometry. These values +must be given in order, from \moc{Z-} to \moc{Z+}. + +\item[\moc{SPLITZ}] keyword to specify that a mesh splitting of the geometry along the $Z-$axis is to be +performed. + +\item[\dusa{ispltz}] array giving the number of zones that will be considered for each region along the +$Z-$axis. By default, +\dusa{ispltz}=1. + +\item[\moc{RADIUS}] keyword to specify the spatial mesh along the radial direction. + +\item[\dusa{rrr}] array giving the radial limits (cm) of the annular +regions (cylindrical or spherical) making up the geometry. It is used for the +following geometries: \moc{TUBE}, \moc{TUBEZ}, \moc{SPHERE}), \moc{CARCEL}, +\moc{CARCELX}, \moc{CARCELY}, \moc{CARCELZ}, \moc{HEXCEL} and \moc{HEXCELZ}. It +is important to note that we must have \dusa{rrr}(1)=0.0. The other values +of \dusa{rrr}($i$) in a \moc{CARCEL}-- or \moc{HEXCEL}--type geometry are +defined as shown in \Fig{radius}. + +\item[\moc{OFFCENTER}] keyword to specify that the concentric annular regions in a \moc{CARCEL}, +\moc{CARCELX}, \moc{CARCELY}, +\moc{CARCELZ}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} geometry can now be displaced with +respect to the center of the Cartesian mesh. This option will only be treated when the \moc{EXCELT:}, +\moc{NXT:} and \moc{EXCELL:} modules are used. + +\item[\dusa{disxyz}] array giving the $x$ (\dusa{disxyz}(1)), $y$ (\dusa{disxyz}(2)) and $z$ +(\dusa{disxyz}(3)) displacement (cm) of the concentric annular regions with respect to the center of the +Cartesian mesh. + +\item[\moc{SPLITR}] keyword to specify that a mesh splitting of the geometry along the radial direction is +to be performed. + +\item[\dusa{ispltr}] array giving the number of zones that will be considered for each region along the +radial axis. A negative value results in a splitting of the regions into zones of equal volumes; a +positive value results in a uniform splitting along the radial direction. By default, \dusa{ispltr}=1. + +\item[\moc{SECT}] keyword to specify the type of sectorization for a Cartesian +or hexagonal cell. In hexagonal geometry, this keyword is expected to be defined near the +\moc{SIDE} keyword. By default, no sectorization is performed. + +\item[\dusa{isect}] sectorization index, defined as +\begin{displaymath} +\negthinspace\negthinspace\negthinspace isect = \left\{ +\begin{array}{rl} +-999: & \textrm{non-sectorized cell processed as a sectorized cell} \\ +-1: & \textrm{$\times$--type sectorization} \\ + 0: & \textrm{non-sectorized cell} \\ + 1: & \textrm{$+$--type sectorization} \\ + 2: & \textrm{simultaneous $\times$-- and $+$--type sectorization} \\ + 3: & \textrm{simultaneous $\times$-- and $+$--type sectorization shifted by 22.5$^\circ$} \\ + 4: & \textrm{windmill sectorization.} +\end{array} \right. +\end{displaymath} + +\item[\dusa{jsect}] number of embedded tubes that are {\sl not} sectorized, with 0 $\le$ \dusa{jsect} $\le$ \dusa{lr}. By default, \dusa{jsect} $=0$. Examples of sectorization options are depicted in Figs.~\ref{fig:rect3} and~\ref{fig:hexa3}. + +\item[\moc{SIDE}] keyword to specify the length of a side of a hexagon. + +\item[\dusa{sideh}] length of one side of a hexagon (cm). + +\item[\dusa{hexmsh}] triangular mesh for \moc{HEXT}, \moc{HEXTCEL}, \moc{HEXTZ} and \moc{HEXTCELZ} hexagonal geometries. By default, \dusa{hexmsh}=\dusa{sideh}/\dusa{nhr}. When \dusa{hexmsh} is provided, it is used instead of the default value with the following constraints +$$ +\textit{sideh} \le \textit{nhr}\times \textit{hexmsh}<\textit{sideh}+\textit{hexmsh} +$$ +The triangles in the last hexagonal ring are truncated at \dusa{sideh} (see \Fig{GeoHEXT4C}). + +\item[\moc{SPLITH}] keyword to specify that a triangular mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX}, \moc{HEXZ}, \moc{HEXT}, \moc{HEXTCEL}, \moc{HEXTZ} and \moc{HEXTCELZ} type geometries. This is valid only if \dusa{nhr}=1. + +\item[\dusa{isplth}] value of the triangular mesh splitting. Its use is similar to \dusa{nhr} except that each sector of the hexagonal cell will be filled by a unique mixture. The number of triangles per hexagon is given by $6 \times$\dusa{isplth}$^2$. +\dusa{isplth} $=0$ is used for full hexagon discretization. + +\item[\moc{SPLITL}] keyword to specify that a lozenge mesh splitting of the hexagonal geometry is to be performed -- for \moc{HEX} and \moc{HEXZ} type geometries. + +\item[\dusa{ispltl}] value of the lozenge splitting. The number of lozenges per hexagon is given by $3 \times$\dusa{ispltl}$^2$. + +\item[\moc{NPIN}] keyword to specify the number of pins located in a cluster geometry. It can only be used for \moc{SPHERE}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} sub-geometry. + +\item[\dusa{npins}] the number of pins associated with this sub-geometry in the primary geometry. + +\item[\moc{DPIN}] keyword to specify the pin density in a geometry that contains clusters. A number $N_{p,r}$ of pins that will be placed randomly in the geometry with +$$ +N_{p,r}=\textrm{NINT}\left(\frac{d_{p,r}V_{c}}{V_{p}}\right) +$$ +where $d_{p,r}$ is the pin density, $V_{g}$ the volume of the cell containing these pins and$V_{p}$ the volume of this pin type. The function $\textrm{NINT}()$ provides the nearest integer associated with its real argument. It can only be used for \moc{SPHERE}, \moc{TUBE}, \moc{TUBEX}, \moc{TUBEY} and \moc{TUBEZ} sub-geometry. + +\item[\dusa{dpins}] the pin density $d_{p,r}$. + +\item[\moc{RPIN}] keyword to specify the radius of an imaginary cylinder where the centers of the pins are to be placed in a cluster geometry. + +\item[\dusa{rpins}] the radius (cm) of an imaginary cylinder where the centers of the pins are to be placed. In the case where a single value is provided for \dusa{rpins}, all the pins are located at the same distance from the center of the cell (taking account the offset provided by the keyword \moc{OFFCENTER}). + +\item[\moc{APIN}] keyword to specify the angle of the first pin or each pin centered on an imaginary cylinder in a cluster geometry. + +\item[\dusa{apins}] the angle (radian) of the first pin in the ring (only one value provided for \dusa{apins}, the angular spacing of the pins being $2\pi/$\dusa{npins}) or the angle of each pins in the ring. + +\item[\moc{CPINX}] keyword to specify the $x$ position where the centers of the pins are +to be placed in a cluster geometry. + +\item[\dusa{xpins}] the $x$ position (cm) where the centers of the pins are to be +placed. + +\item[\moc{CPINY}] keyword to specify the $y$ position where the centers of the pins are +to be placed in a cluster geometry. + +\item[\dusa{ypins}] the $y$ position (cm) where the centers of the pins are to be +placed. + +\item[\moc{CPINZ}] keyword to specify the $z$ position where the centers of the pins are +to be placed in a cluster geometry. + +\item[\dusa{zpins}] the $z$ position (cm) where the centers of the pins are to be +placed. + +\end{ListeDeDescription} + +\begin{figure}[!] +\begin{center} +\epsfxsize=6cm +\centerline{ \epsffile{radius.eps}} +\parbox{16cm}{\caption{Definition of the radii in a \moc{CARCEL}-- or +\moc{HEXCEL}--type geometry}\label{fig:radius}} +\end{center} +\end{figure} + +The user should be warned that the maximum number of zones resulting from the above description of a geometry $L_{\rm{zones}}$ should not exceed the limits imposed by +\dusa{maxreg} and defined in the tracking module \moc{SYBILT:}, \moc{NXT:} or +\moc{EXCELT:} (see \Sect{TRKData}). For pure geometry with splitting we can define the variables $L_x$, $L_y$, $L_z$, $L_r$, $L_h$ and $L_{t}$ as: + \begin{align*} + L_x=&\sum_{i=1}^{\textit{lx}} \textit{ispltx}(i) \\ + L_y=&\sum_{i=1}^{\textit{ly}} \textit{isplty}(i) \\ + L_z=&\sum_{i=1}^{\textit{lz}} \textit{ispltz}(i) \\ + L_r=&\sum_{i=1}^{\textit{lr}} |\textit{ispltr}(i)| \\ + L_h=&\textit{lh} \\ + L_t=&\begin{cases} + 6\times\textit{nhr}^{2} &if $\textit{nhr}> 1$\\ + 6\times\textit{isplith}^{2} &otherwise \\ \end{cases} + \end{align*} +and $L_{\rm{zones}}$ will be given by: + +\begin{itemize} + +\item \moc{SPHERE} geometry. + +$$L_{\rm{zones}}=L_r$$ + +\item \moc{TUBE} geometry. + +$$L_{\rm{zones}}= L_x L_y L_r $$ + +\item \moc{TUBEX} geometry. + +$$L_{\rm{zones}}= L_x L_y L_z L_r$$ + +\item \moc{TUBEY} geometry. + +$$L_{\rm{zones}}= L_x L_y L_z L_r$$ + +\item \moc{TUBEZ} geometry. + +$$L_{\rm{zones}}= L_x L_y L_z L_r$$ + +\item \moc{CAR1D} geometry. + +$$L_{\rm{zones}}=L_x$$ + +\item \moc{CAR2D} geometry +\begin{itemize} +\item without diagonal symmetry. + +$$L_{\rm{zones}}=L_x L_y$$ + +\item with diagonal symmetry. + +$$L_{\rm{zones}}=\frac{L_x (L_y+1)}{2}=\frac{(L_x+1) L_y}{2}$$ +\end{itemize} + +\item \moc{CARCEL} geometries. + +$$L_{\rm{zones}}=L_x L_y (L_r+1) $$ + +\item \moc{CAR3D} geometry +\begin{itemize} +\item without diagonal symmetry. + +$$L_{\rm{zones}}=L_x L_y L_z$$ + +\item with diagonal symmetry. + +$$L_{\rm{zones}}=\frac{L_x (L_y+1) L_z}{2}=\frac{(L_x+1) L_y L_z}{2}$$ +\end{itemize} + +\item \moc{CARCELX} geometry. + +$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$ + +\item \moc{CARCELY} geometry. + +$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$ + +\item \moc{CARCELZ} geometries. + +$$L_{\rm{zones}}=L_x L_y L_z (L_r+1) $$ + +\item \moc{HEX} geometry. + +\begin{align*}L_{\text{zones}}&=L_h\end{align*} + +\item \moc{HEXT} geometry. + +\begin{align*}L_{\text{zones}}&=L_{t}\end{align*} + +\item \moc{HEXCEL} geometries. + +\begin{align*}L_{\text{zones}}&=(L_r+1) \end{align*} + +\item \moc{HEXTCEL} geometries. + +$$L_{\rm{zones}}=L_{t}$$ + +\item \moc{HEXZ} geometry. + +\begin{align*}L_{\text{zones}}&=L_z L_h\end{align*} + +\item \moc{HEXTZ} geometry. + +\begin{align*}L_{\text{zones}}&=L_z L_{t}\end{align*} + +\item \moc{HEXCELZ} geometries. + +\begin{align*}L_{\text{zones}}&=L_z (L_r+1) \end{align*} + +\item \moc{HEXTCELZ} geometries. + +\begin{align*}L_{\text{zones}}&=L_z L_{t} (L_r+1) \end{align*} + +\end{itemize} + +For cluster geometries, only one region is associated with each zone in a pin even if this pin is repeated \dusa{npins} times. + +\vskip 0.08cm + +For mixed geometries, it is important to ensure that $L_{\rm{zones}}$ which represents the +sum over all the sub-geometries of the total number of regions $L^i_t$ +associated with each pure sub-geometry $i$ computed using the technique +described above. For cluster geometries, only one region is associated with each +zone in a pin even if this pin is repeated \dusa{npins} times. + +\begin{figure}[h!] +\begin{center} +\epsfxsize=16cm +\centerline{ \epsffile{rect3c.eps}} +\parbox{14cm}{\caption{Numerotation of the sectors in a Cartesian cell}\label{fig:rect3}} +\end{center} +\end{figure} + +\begin{figure}[h!] +\begin{center} +\epsfxsize=13cm +\centerline{ \epsffile{hexa3c.eps}} +\parbox{14cm}{\caption{Numerotation of the sectors in an hexagonal cell}\label{fig:hexa3}} +\end{center} +\end{figure} + +\begin{figure}[h!] +\begin{center} +\parbox{11.0cm}{\epsfxsize=11cm \epsffile{GeoHEXT4C.eps}} +\parbox{14cm}{\caption{Hexagonal geometry with triangular mesh that extends past the hexagonal boundary}\label{fig:GeoHEXT4C}} +\end{center} +\end{figure} + +\subsubsection{Physical properties of geometry}\label{sect:descPP} + +In addition to specifying the mixture associated with each region in the +geometry, the \dstr{descPP} structure is also used to provide information on the +sub-geometry required in this geometry. For example, an optional procedure in +DRAGON groups together regions so as to reduce the number of unknowns +\dusa{maxreg} in the flux calculation. In this way, only the merged regions +contribute to the cost of the calculation. However, the following points must be +considered: + +\begin{enumerate} + +\item All the cells belonging to the same merged region must have the same +nuclear properties and dimensions. + +\item The grouping procedure is based on the approximation that all the regions +belonging to the same merged region share the same flux. + +\item The merging can also take into account region orientation (by a rotation +and/or transposition) before they are merged. This procedure facilitates the +merging of regions when a \moc{DIAG} or \moc{SYME} boundary condition is used. + +\end{enumerate} +The \dstr{descPP} structure has the following contents: + +\begin{DataStructure}{Structure \dstr{descPP}} +$[$ \moc{MIX} $\{$ (\dusa{imix}(i),i=1,$n_t$) $[$ \moc{REPEAT} $]~|$\\ +$~~~~[[$ \moc{PLANE} \dusa{iplan} $\{$ (\dusa{imix}(i),i=1,\dusa{lp}) $|$ \moc{SAME} \dusa{iplan1}\\ +$~~~~|~[[$ \moc{CROWN} $\{$ (\dusa{imix}(i),i=1,\dusa{lc}) $|$ \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]$\\ +$~~~~|~[[$ \moc{UPTO} \dusa{ic} \moc{ALL} \dusa{jmix} $|$ \moc{SAME} \dusa{iplan1} $\}~]]~]]~\}$\\ +$]$\\ +$[$ \moc{HMIX} (\dusa{ihmix}(i), i=1,$N_t$) $[$ \moc{REPEAT} $]$ $]$\\ +$[$ \moc{CELL} (\dusa{HCELL}(i),i=1,$N_t$) $]$\\ +$[$ \moc{MERGE} (\dusa{imerge}(i),i=1,$N_t$) $]$\\ +$[$ \moc{TURN} (\dusa{HTURN}(i),i=1,$N_t$) $]$\\ +$[$ \moc{CLUSTER} (\dusa{NAMPIN}(i),i=1,$N_p$) $]$\\ +$[$ \moc{MIX-NAMES} (\dusa{NAMMIX}(i),i=1,\dusa{maxmix}) $]$ +\end{DataStructure} + +\noindent + +Here $N_p$ is the number of pin types in the cluster. In addition to the real (physical) mixture \dusa{imix} present in a given region of space and specified by the keyword \moc{MIX}, a virtual mixture \dusa{ihmix} can also be provided using the keyword \moc{HMIX}. This mixture can be used to identify the regions that will be combined in the \moc{EDI:} module to create homogenized region \dusa{ihmix} (see \Sect{EDIData}). Here $N_{t}$ +is computed in a way similar to $L_{\rm zones}$ namely +\begin{itemize} + +\item \moc{SPHERE} geometry. + +$$N_{t}=\textit{lr}$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$). +\end{enumerate} + +\item \moc{TUBE} geometry. + +$$N_{t}=\textit{lr}\times\textit{lx}\times \textit{ly} $$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j)$; +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item \moc{TUBEX} geometry. + +$$N_{t}=\textit{lr}\times\textit{ly}\times \textit{lz}\times \textit{lx}$$ +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(j,k,i)$; +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$ and $i$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$); +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$). +\end{enumerate} + +\item \moc{TUBEY} geometry. + +$$N_{t}=\textit{lr}\times\textit{lz}\times \textit{lx}\times \textit{ly}$$ +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(k,i,j)$; +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$ and $j$); +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item \moc{TUBEZ} geometry. + +$$N_{t}= \textit{lr}\times\textit{lx}\times \textit{ly}\times \textit{lz}$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j,k)$; +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\item \moc{CAR1D} geometry. + +$$N_{t}=\textit{lx}$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$). +\end{enumerate} + +\item \moc{CAR2D} geometry +\begin{itemize} +\item without diagonal symmetry. + +$$N_{t}=\textit{lx}\times \textit{ly}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item with diagonal symmetry (\moc{X-} and \moc{Y+}). + +$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=j,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item with diagonal symmetry (\moc{X+} and \moc{Y-}). + +$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=1,j$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} +\end{itemize} + +\item \moc{CARCEL} geometries. + +$$N_{t}=(\textit{lr}+1)\times\textit{lx}\times \textit{ly} $$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j)$; +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(i,j)$; +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item \moc{CAR3D} geometry +\begin{itemize} +\item without diagonal symmetry. + +$$N_{t}=\textit{lx}\times \textit{ly}\times \textit{lz}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for $k$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\item with diagonal symmetry (\moc{X-} and \moc{Y+}). + +$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}\times\textit{lz}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=j,\textit{lx}$ for each $j$ and $k$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$) for each $k$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + + +\item with diagonal symmetry (\moc{X+} and \moc{Y-}). + +$$N_{t}=\frac{\textit{lx}\times (\textit{lx}+1)}{2}\times\textit{lz}$$ + +The mixtures or cells are then given in the following order +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} ($i=1,j$ for each $j$ and $k$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\end{itemize} + +\item \moc{CARCELX} geometry. + +$$N_{t}=(\textit{lr}+1)\times\textit{ly}\times \textit{lz}\times \textit{lx} $$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(j,k,i)$; +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(j,k,i)$; +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$ and $i$); +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$); +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$). +\end{enumerate} + +\item \moc{CARCELY} geometry. + +$$N_{t}=(\textit{lr}+1)\times\textit{lz}\times \textit{lx}\times \textit{ly}$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(k,i,j)$; +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(k,i,j)$; +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$ for each $i$ and $j$); +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$). +\end{enumerate} + +\item \moc{CARCELZ} geometries. + +$$N_{t}=(\textit{lr}+1)\times\textit{lx}\times \textit{ly}\times \textit{lz}$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) and such that \dusa{imix} is arbitrary (not used) if radial region $l$ does not intersect Cartesian region $(i,j,k)$; +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside Cartesian region $(i,j,k)$; +\item from surface \moc{X-} to surface \moc{X+} ($i=1,\textit{lx}$ for each $j$ and $k$); +\item from surface \moc{Y-} to surface \moc{Y+} ($j=1,\textit{ly}$ for each $k$). +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\item \moc{HEX} geometry. + +$$N_{t}=\textit{lh}$$ +The mixtures or cells are then given in the order provided in \Figto{s30}{compl}. + +\item \moc{HEXT} geometry. + +Three options are possible here: +\begin{itemize} +\item All the triangles in an hexagonal crown have the same mixture. In this case +\begin{align*}N_{t}&=\textit{nhr}\end{align*} +and the real and virtual mixtures are given from each crown starting at the center of the cell. + +\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case +\begin{align*}N_{t}&=6\times \textit{nhr}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$. +\end{enumerate} + +\item All the triangles contain a different mixture. In this case +\begin{align*}N_{t}&=6\times \textit{nhr}^{2}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided. +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$. +\end{enumerate} +\end{itemize} + +\item \moc{HEXCEL} geometries. + +$$N_{t}=(\textit{lr}+1)$$ + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$); +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside the hexagonal region. +\end{enumerate} + +\item \moc{HEXZ} geometry. + +$$N_{t}=\textit{lh}\times \textit{lz}$$ + +The mixtures or cells are then given in the following order + +\begin{enumerate} +\item according to \Figto{s30}{compl} for plane $k$; +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\item \moc{HEXTCEL} geometries. + +Three options are possible here: +\begin{itemize} +\item All the triangles in an hexagonal crown have the same mixture. In this case +\begin{align*}N_{t}&=(\textit{lr}+1)\times \textit{nhr}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each crown ($l=\textit{lr}+1$ is for the part of crown outside the annular regions); +\item from each crown starting from the center of the cell. +\end{enumerate} + +\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case +\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each crown of each sector ($l=\textit{lr}+1$ is for the part of crown outside the annular regions); +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$. +\end{enumerate} + +\item All the triangles contain a different mixture. In this case +\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}^{2}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each triangle ($l=\textit{lr}+1$ is for the part of triangle outside the annular regions); +\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided. +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$. +\end{enumerate} +\end{itemize} + +\item \moc{HEXTZ} geometry. + +Three options are again possible here: +\begin{itemize} +\item All the triangles in an hexagonal crown in a plane have the same mixture. In this case +\begin{align*}N_{t}&=\textit{nhr}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item from each crown starting from the center of the cell; +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} + +\item All the triangles in an hexagonal crown in a given sector in a plane have the same mixture. In this case +\begin{align*}N_{t}&=6\times \textit{nhr}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$; +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} + +\item All the triangles contain a different mixture. In this case +\begin{align*}N_{t}&=6\times \textit{nhr}^{2}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided. +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$; +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} +\end{itemize} + + +\item \moc{HEXCELZ} geometries. + +$$N_{t}=(\textit{lr}+1)\times \textit{lz}$$ + +\item \moc{HEXTCELZ} geometries. + +Three options are possible here: +\begin{itemize} +\item All the triangles in an hexagonal crown have the same mixture. In this case +\begin{align*}N_{t}&=(\textit{lr}+1)\times \textit{nhr}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each crown ($l=\textit{lr}+1$ is for the part of crown outside the annular regions); +\item from each crown starting from the center of the cell; +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} + +\item All the triangles in an hexagonal crown in a given sector have the same mixture. In this case +\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each crown of each sector ($l=\textit{lr}+1$ is for the part of crown outside the annular regions); +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$; +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} + +\item All the triangles contain a different mixture. In this case +\begin{align*}N_{t}&=6\times (\textit{lr}+1)\times \textit{nhr}^{2}\times \textit{lz}\end{align*} +and the real and virtual mixtures are given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}+1$) for each triangle ($l=\textit{lr}+1$ is for the part of triangle outside the annular regions); +\item from each triangle $l$ ($l=1,2\times \textit{nhc}-1$) in hexagonal crown $i$ of sector $j$. \Fig{GeoHEXT4} illustrates region and surface ordering in the case where the default value of \dusa{hexmsh} is used and \Fig{GeoHEXT4C} the same information when a different value of \dusa{hexmsh} is provided. +\item from each crown in sector $j$ starting from the center of the cell; +\item for each sector $j=1,6$. +\item from lowest (\moc{Z-}) to highest (\moc{Z+}) plane ($k=1,\textit{lz}$). +\end{enumerate} +\end{itemize} + +\end{itemize} + +The mixtures are then given in the following order +\begin{enumerate} +\item radially outward ($l=1,\textit{lr}$) for plane $k$; +\item $l=\textit{lr+1}$ for the mixture outside the annular regions but inside the hexagonal region on plane $k$; +\item from surface \moc{Z-} to surface \moc{Z+} ($k=1,\textit{lz}$). +\end{enumerate} + +\begin{figure}[h!] +\begin{center} +\epsfxsize=8cm +\centerline{ \epsffile{Goricart.eps}} +\parbox{14cm}{\caption{Description of the various rotations allowed for +Cartesian geometries}\label{fig:oricart}} +\end{center} +\end{figure} + +\begin{figure}[h!] +\begin{center} +\epsfxsize=11cm +\centerline{ \epsffile{Gorihex.eps}} +\parbox{14cm}{\caption{Description of the various rotation allowed for +hexagonal geometries}\label{fig:orihex}} +\end{center} +\end{figure} + +\begin{figure}[h!] +\begin{center} +\epsfxsize=7cm +\centerline{ \epsffile{Gcluster.eps}} +\parbox{14cm}{\caption{Typical cluster geometry}\label{fig:cluster}} +\end{center} +\end{figure} + +\clearpage + +The inputs associated with this structure have the following meaning: + +\begin{ListeDeDescription}{mmmmmm} + +\item[\moc{MIX}] keyword to specify the isotopic mixture number or +sub-geometry associated +with each region inside the geometry. When diagonal symmetries are considered, +only the mixture associated with regions inside the symmetrized geometry need to +be specified. When a sub-geometry is located inside symmetrized geometry but +outside the calculation region it must be declared {\sl virtual} (for example, +the corners of a nuclear reactor). + +\item[\dusa{imix}] array of $n_{t}\le N_t$ integers {\sl or} character variables associated +with each region. An integer is a mixture number associated with a region +\dusa{imix}$\le$\dusa{maxmix} (see \Sectand{MACData}{LIBData}). If +\dusa{imix}=0, the corresponding volume is replaced by a void region. If +\dusa{imix} is a character variable, it is replaced by the corresponding +sub-geometry or {\sl generating cell}. These values must be specified in +the following order for most geometries: + +\begin{enumerate} +\item radially from the inside out. +\item from surface \moc{X-} to surface \moc{X+} +\item from surface \moc{Y-} to surface \moc{Y+} +\item from surface \moc{Z-} to surface \moc{Z+} +\end{enumerate} + +In the cases where a \moc{CARCELX} and a \moc{TUBEX} geometry are defined then we will use + +\begin{enumerate} +\item radially from the inside out ($lr+1$ mixtures for \moc{CARCELX} and $lr$ for \moc{TUBEX}). +\item from surface \moc{Y-} to surface \moc{Y+} +\item from surface \moc{Z-} to surface \moc{Z+} +\item from surface \moc{X-} to surface \moc{X+} +\end{enumerate} + +Finally, for a \moc{CARCELY} and \moc{TUBEY} geometry are defined the following order is considered: + +\begin{enumerate} +\item radially from the inside out ($lr+1$ mixtures for \moc{CARCELY} and $lr$ for \moc{TUBEY}) +\item from surface \moc{Z-} to surface \moc{Z+} +\item from surface \moc{X-} to surface \moc{X+} +\item from surface \moc{Y-} to surface \moc{Y+} +\end{enumerate} + +In the cases where a sectorized cell geometry is defined, \dusa{imix} must +be defined in each sector, following the order shown in \Figand{rect3}{hexa3}. +Also note that \dusa{imix} is {\sl not affected} by the values of the +mesh-splitting indices \dusa{ispltx}, \dusa{isplty}, \dusa{ispltz} +or \dusa{ispltr}. + +\item[\moc{REPEAT}] keyword to specify the previous list of mixtures will be repeated. This is valid only when $N_t/n_t$ +is an integer. If this keyword is absent and $n_t < N_t$, then the missing mixtures will be replaced +with void (\dusa{imix}(i) $=0$). + +\item[\moc{PLANE}] keyword to attribute mixture numbers to each volume inside a single 2-D plane. This option is +valid only for 3-D geometries, Cartesian or hexagonal. + +\item[\dusa{iplan}] plane number for which material mixture are input. + +\item[\moc{SAME}] keyword to attribute the same material mixture numbers of the \dusa{iplan1} plane to the \dusa{iplan} plane. In +hexagonal geometry, it can indicate that the mixture numbers of the current crown of the \dusa{iplan}th +plane will be identical to those of the same crown of the \dusa{iplan1}th plane. + +\item[\dusa{iplan1}] plane number used as reference to input the current plane or crown(s). + +\item[\dusa{lp}] number of volumes in a plane. In Cartesian geometry, $lp=lx*ly$ and in hexagonal geometry, +$lp=lh$. + +\item[\moc{CROWN}] keyword to attribute mixture numbers to each hexagon of a single crown. This option is only +valid for \moc{COMPLETE} hexagonal geometry definition. Each use of the keyword \moc{CROWN} increases +the crown number by 1. So it is not required to give its number, but crowns must be defined from +the center to the peripherical regions of a plane. + +\item[\dusa{lc}] number of hexagons in the current crown. For the \dusa{i}th crown of a compelete hexagonal plane, +$lc=(i-1)*6$. The first crown is composed of only one hexagon. + +\item[\moc{ALL}] keyword to specify that the \dusa{lc} material mixture number of the current crown have the same value +\dusa{jmix}. + +\item[\moc{UPTO}] keyword to attribute material mixture numbers of the current crown up to the \dusa{ic} one. + +\item[\dusa{ic}] number of the last crown in \moc{UPTO} option. Its value must be greater than equal to the current +crown number. + +\item[\moc{HMIX}] keyword to specify the virtual isotopic mixture associated with each region inside the geometry. These +virtual mixtures will be produced by homogenization in the {\tt EDI:} module (see \Sect{descedi}). + +\item[\moc{CELL}] keyword to specify the location of the sub-geometry called +{\sl generating cells} in a Cartesian or hexagonal geometry. + +\item[\dusa{HCELL}] array of sub-geometry {\tt character*12} names which will +be superimposed upon the current Cartesian geometry. The same sub-geometry may +appear in different positions within the global geometry if the material +properties and dimensions are identical. The concept of sub-geometry is useful +for the interface current method in a SYBIL calculation since the collision +probability matrix associated with each sub-geometry is computed independently +of its location in the geometry. In general, the neutron fluxes in identical +sub-geometry located at different locations will be different even if they are +associated with the same collision probability matrix. These sub-geometry names +must be specified in the following order: + +\begin{enumerate} +\item from surface \moc{X-} to surface \moc{X+} +\item from surface \moc{Y-} to surface \moc{Y+} +\item from surface \moc{Z-} to surface \moc{Z+} +\end{enumerate} + +\item[\moc{MERGE}] keyword to specify that some sub-geometries or regions must +be merged. + +\item[\dusa{imerge}] array of numbers that associate a global sub-geometry or +region number with each sub-geometry or region. All the sub-geometries or +regions with the same global number will be attributed the same flux. + +\item[\moc{TURN}] keyword to specify that some sub-geometries must be rotated +in space before being located at a specific position. + +\item[\dusa{HTURN}] array of {\tt character*1} keywords to rotate +conveniently each sub-geometry. The letters {\tt A} to {\tt L} are used as +keywords to specify these rotation. For Cartesian geometries, the eight possible +orientations are shown in \Fig{oricart} while for hexagonal geometries +the permitted orientations are shown in \Fig{orihex}. For 3-D cells, the +same letters can be used to describe the rotation in the $X-Y$ plane. However, +an additional $-$ sign can be glued to the 2-D rotation identifier to +indicate reflection of the cell along the $Z$-axis ({\tt -A} to {\tt -L}). + +\item[\moc{CLUSTER}] keyword to specify that pin (cylindrical) sub-geometry +will be inserted in the geometry (see \Fig{cluster}). + +\item[\dusa{NAMPIN}] array of cylindrical sub-geometry {\tt character*12} name +representing a pin. This sub-geometry must be of type \moc{TUBE}, \moc{TUBEX}, +\moc{TUBEY} or \moc{TUBEZ}. + +\item[\moc{MIX-NAMES}] keyword to specify character names to material mixtures. +By default, the material mixtures are not named. + +\item[\dusa{NAMMIX}] array of {\tt character*12} names for the material +mixtures. + +\end{ListeDeDescription} + +\clearpage + +\subsubsection{Double-heterogeneity}\label{sect:descDH} + +The structure \dstr{descDH} provides the possibility to define a stochastic mixture of cylindrical or spherical micro-structures that can be distributed inside {\sl composite mixtures} of the current {\sl macro-geometry}. A composite mixture is represented by a {\sl material mixture index} with a value greater than \dusa{maxmix}, the maximum number of real mixtures. Each micro-structure can be composed of many micro-volumes.\cite{BIHET} + +\begin{DataStructure}{Structure \dstr{descDH}} +$[$ \moc{BIHET} $\{$ \moc{TUBE} $|$ \moc{SPHE} $\}$ \dusa{nmistr} +\dusa{nmilg} \\ +\hskip 1.0cm (\dusa{ns}(i),i=1,\dusa{nmistr}) \\ +\hskip 1.0cm((\dusa{rs}(i,j),j=1,\dusa{ns}(i)+1),i=1,\dusa{nmistr})\\ +\hskip 1.0cm(\dusa{milie}(i),i=1,\dusa{nmilg})\\ +\hskip 1.0cm(\dusa{mixdil}(i),i=1,\dusa{nmilg})\\ +\hskip 1.0cm( (\dusa{fract}(i,j),j=1,\dusa{nmistr}) +( $[$(\dusa{mixgr}(i,j,k),k=1,\dusa{ns}(j))$]$,j=1,\dusa{nmistr}), i=1,\dusa{nmilg}) $]$ +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\moc{BIHET}] keyword to specify that the current macro-geometry is containing composite mixtures. + +\item[\moc{TUBE}] keyword to specify that the micro-structures are of a +cylindrical geometry; + +\item[\moc{SPHE}] keyword to specify that the micro-structures are of a +spherical geometry. + +\item[\dusa{nmistr}] maximum number of micro-structure types in the composite mixtures. Each type of +micro-structure is characterized by its dimension and may have distinct +volumetric concentrations in each of the macro-geometry volumes. All the +micro-structures of a given type have the same nuclear properties in a given +macro-volume. The micro-structures of a given type may have different nuclear +properties within different macro-volumes. + +\item[\dusa{nmilg}] number of composite mixtures. This is the number of material mixture indices of the macro-geometry with a value $>$\dusa{maxmix}. + +\item[\dusa{ns}] array giving the number of sub-regions (tubes or spherical +shells) in the micro-structures. Each type of micro-structures may contain a +different number of micro-volumes. + +\item[\dusa{rs}] array giving the radius of the tubes or spherical shells +making up the micro-structures. For each type of micro structure $i$, we will +have an initial radius of \dusa{rs}$(1,i)=0.0$. + +\item[\dusa{milie}] array giving the indices used to defined composite mixtures in the macro-geometry. These composite mixture indices must be $>$\dusa{maxmix}. + +\item[\dusa{mixdil}] array giving the mixture indices associated with the diluent in each composite mixtures of the macro-geometry. These values must be $\le$\dusa{maxmix}. + +\item[\dusa{fract}] array of volumetric concentration ($V_{G}/V_{R}$) of +each micro-structures (volume $V_{G}$) in a given region (volume $V_{R}$) of the +macro-geometry. + +\item[\dusa{mixgr}] array giving the mixture index associated with each +region of the micro-structures. Note that \dusa{mixgr} should be specified only +for the regions of the micro-structure which have a concentration +\dusa{fract}$>$0. These values must be $\le$\dusa{maxmix}. + +\end{ListeDeDescription} + +Examples of geometry definitions can be found in \Sect{ExGEOData}. + +\subsubsection{Do-it-yourself geometries}\label{sect:descSIJ} + +A {\sl do-it-yourself} geometry is an abstract representation of an assembly of arbitrary unit-cells defined in term of their probability of presence and of their probability to have a particular neighbor. Structure \dstr{descSIJ} is defined as + +\begin{DataStructure}{Structure \dstr{descSIJ}} +$[$ \moc{POURCE} (\dusa{pcinl}(i),i=1,\dusa{lp}) $]$\\ +$[$ \moc{PROCEL} ((\dusa{pijcel}(i,j),j=1,\dusa{lp}),i=1,\dusa{lp}) $]$ +\end{DataStructure} + +\noindent where +\begin{ListeDeDescription}{mmmmmmm} + +\item[\moc{POURCE}] keyword to specify that a {\sl do-it-yourself} type +geometry is to be defined, that is to say a geometry resembling the multicell +geometry seen in APOLLO-1.\cite{apollo1} This option permits the interactions +between different arbitrarily arranged cells in an infinite lattice to be +treated. The cells are identified by the information +following the keyword \moc{CELL}. The user must ensure that the total number of +regions appearing in all the cells must be less than \dusa{maxreg}. + +\item[\dusa{pcinl}] array giving the proportion of each cell type in the +lattice such that: + +$$|\sum_{i=1}^{{\it lp}}{\it pcinl}(i)-1.|<10^{-5}$$ + +\item[\moc{PROCEL}] keyword to specify that in a {\sl do-it-yourself} type +geometry rather than using a statistical arrangement of cells, a pre-calculated +cell distribution is to be considered. If the \moc{POURCE} structure is +given without the \moc{PROCEL} structure, a {\sl statistical} approximation +is used, as defined in Ref.~\citen{apollo1}. + +\item[\dusa{pijcel}] array giving the pre-calculated probability for a neutron +leaving a cell of type i to enter a cell of type j without crossing any other +cell. We require: + +$$|S(i){\it pcinl}(i){\it pijcel}(i,j)-S(j){\it pcinl}(j) {\it +pijcel}(j,i)|<10^{-4}$$ + +\noindent where $S(i)$ and $S(j)$ are the exterior surfaces area of the cells of +type $i$ and $j$ respectively. + +\end{ListeDeDescription} + +Examples of geometry definitions can be found in \Sect{ExGEOData}. + +\eject |
