summaryrefslogtreecommitdiff
path: root/Utilib/src/ALDFIT.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Utilib/src/ALDFIT.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Utilib/src/ALDFIT.f')
-rw-r--r--Utilib/src/ALDFIT.f109
1 files changed, 109 insertions, 0 deletions
diff --git a/Utilib/src/ALDFIT.f b/Utilib/src/ALDFIT.f
new file mode 100644
index 0000000..2a3e89f
--- /dev/null
+++ b/Utilib/src/ALDFIT.f
@@ -0,0 +1,109 @@
+*DECK ALDFIT
+ SUBROUTINE ALDFIT(N,MA,X,Y,W,PARAM)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* performs linear least squares fitting to a polynomial of a specified
+* order in one independent variable using the Forsythe method.
+*
+*Copyright:
+* Copyright (C) 1993 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* N number of data points i.e., number of X,Y values.
+* MA integer specifying the order of the polynomial.
+* X array of values of indep. variable.
+* Y array of values of dependent variable.
+* W array of weights.
+*
+*Parameters: output
+* PARAM real array of coefficients of the fitted polynomial.
+* PARAM(I)=coeff. of X**I.
+*
+*-----------------------------------------------------------------------
+*
+ IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER N,MA
+ DOUBLE PRECISION X(N),Y(N),W(N),PARAM(0:MA)
+*----
+* ALLOCATABLE ARRAYS
+*----
+ DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: GAMMA,POLY,PP
+*
+ IF(MA.GE.N) CALL XABORT('ALDFIT: UNDER-DETERMINED SYSTEM.')
+ AA=0.0D0
+ BB=0.0D0
+ CC=0.0D0
+ DO 10 I=1,N
+ AA=AA+W(I)*X(I)
+ BB=BB+W(I)*Y(I)
+ CC=CC+W(I)
+ 10 CONTINUE
+ PARAM(0)=BB/CC
+ IF(MA.EQ.0) RETURN
+ ALLOCATE(GAMMA(MA,3),POLY(N,0:2),PP(0:MA,0:2))
+ POLY(:N,0)=1.0D0
+ GAMMA(1,1)=AA/CC
+ GAMMA(1,2)=0.0D0
+ AA=0.0D0
+ BB=0.0D0
+ DO 20 I=1,N
+ POLY(I,1)=X(I)-GAMMA(1,1)
+ AA=AA+W(I)*POLY(I,1)*Y(I)
+ BB=BB+W(I)*POLY(I,1)**2
+ 20 CONTINUE
+ GAMMA(1,3)=AA/BB
+ DO 50 J=2,MA
+ AA=0.0D0
+ BB=0.0D0
+ CC=0.0D0
+ DD=0.0D0
+ DO 30 I=1,N
+ AA=AA+W(I)*X(I)*POLY(I,MOD(J-1,3))**2
+ BB=BB+W(I)*POLY(I,MOD(J-1,3))**2
+ CC=CC+W(I)*X(I)*POLY(I,MOD(J-1,3))*POLY(I,MOD(J-2,3))
+ DD=DD+W(I)*POLY(I,MOD(J-2,3))**2
+ 30 CONTINUE
+ GAMMA(J,1)=AA/BB
+ GAMMA(J,2)=CC/DD
+ AA=0.0D0
+ BB=0.0D0
+ DO 40 I=1,N
+ POLY(I,MOD(J,3))=(X(I)-GAMMA(J,1))*POLY(I,MOD(J-1,3))-GAMMA(J,2)*
+ 1 POLY(I,MOD(J-2,3))
+ AA=AA+W(I)*POLY(I,MOD(J,3))*Y(I)
+ BB=BB+W(I)*POLY(I,MOD(J,3))**2
+ 40 CONTINUE
+ GAMMA(J,3)=AA/BB
+ 50 CONTINUE
+*
+ DO 60 I=1,MA
+ PP(I,0)=0.0D0
+ PARAM(I)=0.0D0
+ 60 CONTINUE
+ PP(0,0)=1.0D0
+ DO 90 J=1,MA
+ DO 70 I=0,MA
+ PP(I,MOD(J,3))=0.0D0
+ 70 CONTINUE
+ DO 80 I=0,J
+ IF(I.LT.J) PP(I+1,MOD(J,3))=PP(I,MOD(J-1,3))
+ PP(I,MOD(J,3))=PP(I,MOD(J,3))-PP(I,MOD(J-1,3))*GAMMA(J,1)
+ IF(J.GT.1) PP(I,MOD(J,3))=PP(I,MOD(J,3))-PP(I,MOD(J-2,3))*
+ 1 GAMMA(J,2)
+ PARAM(I)=PARAM(I)+PP(I,MOD(J,3))*GAMMA(J,3)
+ 80 CONTINUE
+ 90 CONTINUE
+ DEALLOCATE(GAMMA,POLY,PP)
+ RETURN
+ END