diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/TRICO.f | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/TRICO.f')
| -rwxr-xr-x | Trivac/src/TRICO.f | 159 |
1 files changed, 159 insertions, 0 deletions
diff --git a/Trivac/src/TRICO.f b/Trivac/src/TRICO.f new file mode 100755 index 0000000..d5b0254 --- /dev/null +++ b/Trivac/src/TRICO.f @@ -0,0 +1,159 @@ +*DECK TRICO + SUBROUTINE TRICO (IELEM,IR,NEL,K,VOL0,MAT,DIF,XX,YY,ZZ,DD,KN,QFR, + 1 CYLIND,A) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Compute the mesh centered finite difference coefficients in element K. +* +*Copyright: +* Copyright (C) 2002 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* IELEM degree of the polynomial basis: =1 (linear/finite +* differences); =2 (parabolic); =3 (cubic); =4 (quartic). +* IR first dimension of matrix DIF. +* NEL total number of finite elements. +* K index of finite element under consideration. +* VOL0 volume of finite element under consideration. +* MAT mixture index assigned to each element. +* DIF directional diffusion coefficients. +* XX X-directed mesh spacings. +* YY Y-directed mesh spacings. +* ZZ Z-directed mesh spacings. +* DD used with cylindrical geometry. +* KN element-ordered unknown list: +* .GT.0: neighbour index; +* =-1: void/albedo boundary condition; +* =-2: reflection boundary condition; +* =-3: ZERO flux boundary condition; +* =-4: SYME boundary condition (axial symmetry). +* QFR element-ordered boundary conditions. +* CYLIND cylindrical geometry flag (set with CYLIND=.true.). +* +*Parameters: output +* A mesh centered finite difference coefficients. +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER IELEM,IR,NEL,K,MAT(NEL),KN(6) + REAL VOL0,DIF(IR,3),XX(NEL),YY(NEL),ZZ(NEL),DD(NEL),QFR(6) + LOGICAL CYLIND + DOUBLE PRECISION A(6) +*---- +* LOCAL VARIABLES +*---- + DOUBLE PRECISION DHARM,DIN,DOT + DHARM(X1,X2,DIF1,DIF2)=2.0D0*DIF1*DIF2/(X1*DIF2+X2*DIF1) +* + DENOM=REAL((IELEM+1)*IELEM) + L=MAT(K) + DX=XX(K) + DY=YY(K) + DZ=ZZ(K) + IF(CYLIND) THEN + DIN=1.0D0-0.5D0*DX/DD(K) + DOT=1.0D0+0.5D0*DX/DD(K) + ELSE + DIN=1.0D0 + DOT=1.0D0 + ENDIF + KK1=KN(1) + KK2=KN(2) + KK3=KN(3) + KK4=KN(4) + KK5=KN(5) + KK6=KN(6) +* X- SIDE: + IF(KK1.GT.0) THEN + A(1)=DHARM(DX,XX(KK1),DIF(L,1),DIF(MAT(KK1),1))*DIN*VOL0/DX + ELSE IF(KK1.EQ.-1) THEN + A(1)=DHARM(DX,DX,DIF(L,1),DX*QFR(1)/DENOM)*DIN*VOL0/DX + ELSE IF(KK1.EQ.-2) THEN + A(1)=0.0D0 + ELSE IF(KK1.EQ.-3) THEN + A(1)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DIN*VOL0/DX + ENDIF +* X+ SIDE: + IF(KK2.GT.0) THEN + A(2)=DHARM(DX,XX(KK2),DIF(L,1),DIF(MAT(KK2),1))*DOT*VOL0/DX + ELSE IF(KK2.EQ.-1) THEN + A(2)=DHARM(DX,DX,DIF(L,1),DX*QFR(2)/DENOM)*DOT*VOL0/DX + ELSE IF(KK2.EQ.-2) THEN + A(2)=0.0D0 + ELSE IF(KK2.EQ.-3) THEN + A(2)=2.0D0*DHARM(DX,DX,DIF(L,1),DIF(L,1))*DOT*VOL0/DX + ELSE IF(KK2.EQ.-4) THEN + IF(KK1.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (1).') + A(2)=A(1) + ENDIF + IF(KK1.EQ.-4) THEN + IF(KK2.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (2).') + A(1)=A(2) + ENDIF +* Y- SIDE: + IF(KK3.GT.0) THEN + A(3)=DHARM(DY,YY(KK3),DIF(L,2),DIF(MAT(KK3),2))*VOL0/DY + ELSE IF(KK3.EQ.-1) THEN + A(3)=DHARM(DY,DY,DIF(L,2),DY*QFR(3)/DENOM)*VOL0/DY + ELSE IF(KK3.EQ.-2) THEN + A(3)=0.0D0 + ELSE IF(KK3.EQ.-3) THEN + A(3)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY + ENDIF +* Y+ SIDE: + IF(KK4.GT.0) THEN + A(4)=DHARM(DY,YY(KK4),DIF(L,2),DIF(MAT(KK4),2))*VOL0/DY + ELSE IF(KK4.EQ.-1) THEN + A(4)=DHARM(DY,DY,DIF(L,2),DY*QFR(4)/DENOM)*VOL0/DY + ELSE IF(KK4.EQ.-2) THEN + A(4)=0.0D0 + ELSE IF(KK4.EQ.-3) THEN + A(4)=2.0D0*DHARM(DY,DY,DIF(L,2),DIF(L,2))*VOL0/DY + ELSE IF(KK4.EQ.-4) THEN + IF(KK3.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (3).') + A(4)=A(3) + ENDIF + IF(KK3.EQ.-4) THEN + IF(KK4.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (4).') + A(3)=A(4) + ENDIF +* Z- SIDE: + IF(KK5.GT.0) THEN + A(5)=DHARM(DZ,ZZ(KK5),DIF(L,3),DIF(MAT(KK5),3))*VOL0/DZ + ELSE IF(KK5.EQ.-1) THEN + A(5)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(5)/DENOM)*VOL0/DZ + ELSE IF(KK5.EQ.-2) THEN + A(5)=0.0D0 + ELSE IF(KK5.EQ.-3) THEN + A(5)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ + ENDIF +* Z+ SIDE: + IF(KK6.GT.0) THEN + A(6)=DHARM(DZ,ZZ(KK6),DIF(L,3),DIF(MAT(KK6),3))*VOL0/DZ + ELSE IF(KK6.EQ.-1) THEN + A(6)=DHARM(DZ,DZ,DIF(L,3),DZ*QFR(6)/DENOM)*VOL0/DZ + ELSE IF(KK6.EQ.-2) THEN + A(6)=0.0D0 + ELSE IF(KK6.EQ.-3) THEN + A(6)=2.0D0*DHARM(DZ,DZ,DIF(L,3),DIF(L,3))*VOL0/DZ + ELSE IF(KK6.EQ.-4) THEN + IF(KK5.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (5).') + A(6)=A(5) + ENDIF + IF(KK5.EQ.-4) THEN + IF(KK6.EQ.-4) CALL XABORT('TRICO: INCONSISTENT SYME (6).') + A(5)=A(6) + ENDIF + RETURN + END |
