summaryrefslogtreecommitdiff
path: root/Trivac/src/PNMAR2.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/PNMAR2.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/PNMAR2.f')
-rwxr-xr-xTrivac/src/PNMAR2.f118
1 files changed, 118 insertions, 0 deletions
diff --git a/Trivac/src/PNMAR2.f b/Trivac/src/PNMAR2.f
new file mode 100755
index 0000000..e874d63
--- /dev/null
+++ b/Trivac/src/PNMAR2.f
@@ -0,0 +1,118 @@
+*DECK PNMAR2
+ FUNCTION PNMAR2(NGPT,L1,L2)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Return the dual Marshak boundary coefficients in plane geometry.
+* These coefficients are specific to the left boundary.
+*
+*Copyright:
+* Copyright (C) 2002 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* NGPT number of Gauss-Legendre base points for the integration of
+* the direction cosine. Set to 65 for exact integration.
+* L1 first Legendre order (even number in mixed dual cases).
+* L2 second Legendre order (odd number in mixed dual cases).
+
+*Parameters: output
+* PNMAR2 Marshak coefficient.
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NGPT,L1,L2
+ REAL PNMAR2
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER(MAXGPT=64)
+ REAL ZGKSI(MAXGPT),WGKSI(MAXGPT)
+ DOUBLE PRECISION SUM,PNL1,PNL2,P1,P2
+*
+ IF(MOD(L1,2).EQ.0) THEN
+ CALL XABORT('PNMAR2: ODD FIRST INDEX EXPECTED.')
+ ENDIF
+ PNL1=0.0D0
+ PNL2=0.0D0
+ IF(NGPT.LE.64) THEN
+* USE A GAUSS-LEGENDRE QUADRATURE.
+ CALL ALGPT(NGPT,-1.0,1.0,ZGKSI,WGKSI)
+ SUM=0.0
+ DO 30 I=NGPT/2+1,NGPT
+ P1=1.0D0
+ P2=ZGKSI(I)
+ IF(L1.EQ.0) THEN
+ PNL1=1.0D0
+ ELSE IF(L1.EQ.1) THEN
+ PNL1=P2
+ ELSE
+ DO 10 LL=2,L1
+ PNL1=(ZGKSI(I)*REAL(2*LL-1)*P2-REAL(LL-1)*P1)/REAL(LL)
+ P1=P2
+ P2=PNL1
+ 10 CONTINUE
+ ENDIF
+ P1=1.0D0
+ P2=ZGKSI(I)
+ IF(L2.EQ.0) THEN
+ PNL2=1.0D0
+ ELSE IF(L2.EQ.1) THEN
+ PNL2=P2
+ ELSE
+ DO 20 LL=2,L2
+ PNL2=(ZGKSI(I)*REAL(2*LL-1)*P2-REAL(LL-1)*P1)/REAL(LL)
+ P1=P2
+ P2=PNL2
+ 20 CONTINUE
+ ENDIF
+ SUM=SUM+WGKSI(I)*ZGKSI(I)*(PNL1*PNL2)
+ 30 CONTINUE
+ PNMAR2=REAL(SUM*REAL(2*L1+1))
+ ELSE
+* USE EXACT INTEGRATION.
+ NGPTE=16
+ CALL ALGPT(NGPTE,0.0,1.0,ZGKSI,WGKSI)
+ SUM=0.0D0
+ DO 60 I=1,NGPTE
+ P1=1.0D0
+ P2=ZGKSI(I)
+ IF(L1.EQ.0) THEN
+ PNL1=1.0D0
+ ELSE IF(L1.EQ.1) THEN
+ PNL1=P2
+ ELSE
+ DO 40 LL=2,L1
+ PNL1=(ZGKSI(I)*REAL(2*LL-1)*P2-REAL(LL-1)*P1)/REAL(LL)
+ P1=P2
+ P2=PNL1
+ 40 CONTINUE
+ ENDIF
+ P1=1.0D0
+ P2=ZGKSI(I)
+ IF(L2.EQ.0) THEN
+ PNL2=1.0D0
+ ELSE IF(L2.EQ.1) THEN
+ PNL2=P2
+ ELSE
+ DO 50 LL=2,L2
+ PNL2=(ZGKSI(I)*REAL(2*LL-1)*P2-REAL(LL-1)*P1)/REAL(LL)
+ P1=P2
+ P2=PNL2
+ 50 CONTINUE
+ ENDIF
+ SUM=SUM+WGKSI(I)*ZGKSI(I)*(PNL1*PNL2)
+ 60 CONTINUE
+ PNMAR2=REAL(SUM*REAL(2*L1+1))
+ ENDIF
+ RETURN
+ END