diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/PNFL3E.f | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/PNFL3E.f')
| -rwxr-xr-x | Trivac/src/PNFL3E.f | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/Trivac/src/PNFL3E.f b/Trivac/src/PNFL3E.f new file mode 100755 index 0000000..8b737bb --- /dev/null +++ b/Trivac/src/PNFL3E.f @@ -0,0 +1,317 @@ +*DECK PNFL3E + SUBROUTINE PNFL3E (IL,NREG,IELEM,ICOL,XX,YY,ZZ,MAT,VOL,NBMIX,NLF, + 1 NVD,NAN,SIGTI,L4,KN,QFR,LC,R,V,SUNKNO,FUNKNO) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Perform a one-group SPN flux iteration in Cartesian 3D geometry. +* +*Copyright: +* Copyright (C) 2004 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* IL current Legendre order. +* NREG total number of regions. +* IELEM degree of the Lagrangian finite elements: =1 (linear); +* =2 (parabolic); =3 (cubic); =4 (quartic). +* ICOL type of quadrature: =1 (analytical integration); +* =2 (Gauss-Lobatto); =3 (Gauss-Legendre). +* XX X-directed mesh spacings. +* YY Y-directed mesh spacings. +* ZZ Z-directed mesh spacings. +* MAT index-number of the mixture type assigned to each volume. +* VOL volumes. +* NBMIX number of mixtures. +* NLF number of Legendre orders for the flux (even number). +* NVD type of void boundary condition if NLF>0 and ICOL=3. +* NAN number of Legendre orders for the cross sections. +* SIGTI inverse macroscopic cross sections ordered by mixture. +* SIGTI(:,NAN) generally contains the inverse total cross +* section only. +* L4 number of unknowns per energy group and per set of two +* Legendre orders. +* KN element-ordered unknown list. +* QFR element-ordered boundary conditions. +* LC order of the unit matrices. +* R unit Cartesian mass matrix. +* V unit nodal coupling matrix. +* SUNKNO sources. +* FUNKNO initial fluxes. +* +*Parameters: output +* FUNKNO right-hand-side of the linear system. +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER IL,NREG,IELEM,ICOL,MAT(NREG),NBMIX,NLF,NVD,NAN,L4, + 1 KN(NREG*(1+6*IELEM**2)),LC + REAL XX(NREG),YY(NREG),ZZ(NREG),VOL(NREG),SIGTI(NBMIX,NAN), + 1 QFR(6*NREG),R(LC,LC),V(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2) +*---- +* LOCAL VARIABLES +*---- + REAL QQ(5,5) +* + IF(ICOL.EQ.3) THEN + IF(NVD.EQ.0) THEN + NZMAR=NLF+1 + ELSE IF(NVD.EQ.1) THEN + NZMAR=NLF + ELSE IF(NVD.EQ.2) THEN + NZMAR=65 + ENDIF + ELSE + NZMAR=65 + ENDIF + DO 12 I0=1,IELEM + DO 11 J0=1,IELEM + QQ(I0,J0)=0.0 + DO 10 K0=2,IELEM + QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0) + 10 CONTINUE + 11 CONTINUE + 12 CONTINUE + FACT=REAL(2*IL+1) + IF(MOD(IL,2).EQ.0) THEN + DO 20 I=1,L4 + FUNKNO((IL/2)*L4+I)=SUNKNO((IL/2)*L4+I) + 20 CONTINUE + ENDIF +*---- +* COMPUTE THE SOLUTION AT ORDER IL. +*---- + NUM1=0 + NUM2=0 + DO 150 K=1,NREG + IBM=MAT(K) + IF(IBM.EQ.0) GO TO 150 + VOL0=VOL(K) + IF(MOD(IL,2).EQ.0) THEN +* EVEN PARITY EQUATION + IF(IL.GE.2) THEN + DO 32 K3=0,IELEM-1 + DO 31 K2=0,IELEM-1 + KN1=KN(NUM1+2+K3*IELEM+K2) + KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2) + KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2) + KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2) + KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2) + KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2) + IND1=((IL-2)/2)*L4+ABS(KN1) + IND2=((IL-2)/2)*L4+ABS(KN2) + IND3=((IL-2)/2)*L4+ABS(KN3) + IND4=((IL-2)/2)*L4+ABS(KN4) + IND5=((IL-2)/2)*L4+ABS(KN5) + IND6=((IL-2)/2)*L4+ABS(KN6) + DO 30 K1=0,IELEM-1 + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + IF(KN1.NE.0) THEN + SG=REAL(SIGN(1,KN1)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)* + 1 FUNKNO(IND1)/XX(K) + ENDIF + IF(KN2.NE.0) THEN + SG=REAL(SIGN(1,KN2)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(IND2)/XX(K) + ENDIF + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + IF(KN3.NE.0) THEN + SG=REAL(SIGN(1,KN3)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)* + 1 FUNKNO(IND3)/YY(K) + ENDIF + IF(KN4.NE.0) THEN + SG=REAL(SIGN(1,KN4)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(IND4)/YY(K) + ENDIF + JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + IF(KN5.NE.0) THEN + SG=REAL(SIGN(1,KN5)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)* + 1 FUNKNO(IND5)/ZZ(K) + ENDIF + IF(KN6.NE.0) THEN + SG=REAL(SIGN(1,KN6)) + FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(IND6)/ZZ(K) + ENDIF + 30 CONTINUE + 31 CONTINUE + 32 CONTINUE + ENDIF + ELSE + DO 145 K3=0,IELEM-1 + DO 140 K2=0,IELEM-1 +* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION +* OF THE EVEN PARITY EQUATION. + IF((IL.GE.3).AND.(IELEM.GT.1)) THEN + GARSI=SIGTI(IBM,MIN(IL-1,NAN)) + DO 40 K1=0,IELEM-1 + IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 40 + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*XX(K)*XX(K)) +* + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*YY(K)*YY(K)) +* + JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*ZZ(K)*ZZ(K)) + 40 CONTINUE + ENDIF + IF((IL.LE.NLF-3).AND.(IELEM.GT.1)) THEN + GARSI=SIGTI(IBM,MIN(IL+1,NAN)) + DO 50 K1=0,IELEM-1 + IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 50 + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*XX(K)*XX(K)) +* + JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*YY(K)*YY(K)) +* + JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0* + 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*ZZ(K)*ZZ(K)) + 50 CONTINUE + ENDIF +* +* ODD PARITY EQUATION + KN1=KN(NUM1+2+K3*IELEM+K2) + KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2) + KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2) + KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2) + KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2) + KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2) + IND1=(IL/2)*L4+ABS(KN1) + IND2=(IL/2)*L4+ABS(KN2) + IND3=(IL/2)*L4+ABS(KN3) + IND4=(IL/2)*L4+ABS(KN4) + IND5=(IL/2)*L4+ABS(KN5) + IND6=(IL/2)*L4+ABS(KN6) + IF((QFR(NUM2+1).NE.0.0).AND.(KN1.NE.0)) THEN +* XINF SIDE. + DO 60 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 60 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN1) + FUNKNO(IND1)=FUNKNO(IND1)+0.5*FACT*QFR(NUM2+1)*ZMARS* + 1 FUNKNO(INDL) + 60 CONTINUE + ENDIF + IF((QFR(NUM2+2).NE.0.0).AND.(KN2.NE.0)) THEN +* XSUP SIDE. + DO 70 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 70 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN2) + FUNKNO(IND2)=FUNKNO(IND2)+0.5*FACT*QFR(NUM2+2)*ZMARS* + 1 FUNKNO(INDL) + 70 CONTINUE + ENDIF + IF((QFR(NUM2+3).NE.0.0).AND.(KN3.NE.0)) THEN +* YINF SIDE. + DO 80 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 80 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN3) + FUNKNO(IND3)=FUNKNO(IND3)+0.5*FACT*QFR(NUM2+3)*ZMARS* + 1 FUNKNO(INDL) + 80 CONTINUE + ENDIF + IF((QFR(NUM2+4).NE.0.0).AND.(KN4.NE.0)) THEN +* YSUP SIDE. + DO 90 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 90 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN4) + FUNKNO(IND4)=FUNKNO(IND4)+0.5*FACT*QFR(NUM2+4)*ZMARS* + 1 FUNKNO(INDL) + 90 CONTINUE + ENDIF + IF((QFR(NUM2+5).NE.0.0).AND.(KN5.NE.0)) THEN +* ZINF SIDE. + DO 100 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 100 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN5) + FUNKNO(IND5)=FUNKNO(IND5)+0.5*FACT*QFR(NUM2+5)*ZMARS* + 1 FUNKNO(INDL) + 100 CONTINUE + ENDIF + IF((QFR(NUM2+6).NE.0.0).AND.(KN6.NE.0)) THEN +* ZSUP SIDE. + DO 110 IL2=1,NLF-1,2 + IF(IL2.EQ.IL) GO TO 110 + ZMARS=PNMAR2(NZMAR,IL2,IL) + INDL=(IL2/2)*L4+ABS(KN6) + FUNKNO(IND6)=FUNKNO(IND6)+0.5*FACT*QFR(NUM2+6)*ZMARS* + 1 FUNKNO(INDL) + 110 CONTINUE + ENDIF + IF(IL.LE.NLF-3) THEN + DO 130 K1=0,IELEM-1 + JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1 + IF(KN1.NE.0) THEN + SG=REAL(SIGN(1,KN1)) + FUNKNO(IND1)=FUNKNO(IND1)-SG*REAL(IL+1)*VOL0*V(1,K1+1)* + 1 FUNKNO(JND1)/XX(K) + ENDIF + IF(KN2.NE.0) THEN + SG=REAL(SIGN(1,KN2)) + FUNKNO(IND2)=FUNKNO(IND2)-SG*REAL(IL+1)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/XX(K) + ENDIF + JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2 + IF(KN3.NE.0) THEN + SG=REAL(SIGN(1,KN3)) + FUNKNO(IND3)=FUNKNO(IND3)-SG*REAL(IL+1)*VOL0*V(1,K1+1)* + 1 FUNKNO(JND1)/YY(K) + ENDIF + IF(KN4.NE.0) THEN + SG=REAL(SIGN(1,KN4)) + FUNKNO(IND4)=FUNKNO(IND4)-SG*REAL(IL+1)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/YY(K) + ENDIF + JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2 + IF(KN5.NE.0) THEN + SG=REAL(SIGN(1,KN5)) + FUNKNO(IND5)=FUNKNO(IND5)-SG*REAL(IL+1)*VOL0*V(1,K1+1)* + 1 FUNKNO(JND1)/ZZ(K) + ENDIF + IF(KN6.NE.0) THEN + SG=REAL(SIGN(1,KN6)) + FUNKNO(IND6)=FUNKNO(IND6)-SG*REAL(IL+1)*VOL0* + 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/ZZ(K) + ENDIF + 130 CONTINUE + ENDIF + 140 CONTINUE + 145 CONTINUE + ENDIF + NUM1=NUM1+1+6*IELEM**2 + NUM2=NUM2+6 + 150 CONTINUE + RETURN + END |
