summaryrefslogtreecommitdiff
path: root/Trivac/src/PNFL3E.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/PNFL3E.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/PNFL3E.f')
-rwxr-xr-xTrivac/src/PNFL3E.f317
1 files changed, 317 insertions, 0 deletions
diff --git a/Trivac/src/PNFL3E.f b/Trivac/src/PNFL3E.f
new file mode 100755
index 0000000..8b737bb
--- /dev/null
+++ b/Trivac/src/PNFL3E.f
@@ -0,0 +1,317 @@
+*DECK PNFL3E
+ SUBROUTINE PNFL3E (IL,NREG,IELEM,ICOL,XX,YY,ZZ,MAT,VOL,NBMIX,NLF,
+ 1 NVD,NAN,SIGTI,L4,KN,QFR,LC,R,V,SUNKNO,FUNKNO)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Perform a one-group SPN flux iteration in Cartesian 3D geometry.
+*
+*Copyright:
+* Copyright (C) 2004 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* IL current Legendre order.
+* NREG total number of regions.
+* IELEM degree of the Lagrangian finite elements: =1 (linear);
+* =2 (parabolic); =3 (cubic); =4 (quartic).
+* ICOL type of quadrature: =1 (analytical integration);
+* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
+* XX X-directed mesh spacings.
+* YY Y-directed mesh spacings.
+* ZZ Z-directed mesh spacings.
+* MAT index-number of the mixture type assigned to each volume.
+* VOL volumes.
+* NBMIX number of mixtures.
+* NLF number of Legendre orders for the flux (even number).
+* NVD type of void boundary condition if NLF>0 and ICOL=3.
+* NAN number of Legendre orders for the cross sections.
+* SIGTI inverse macroscopic cross sections ordered by mixture.
+* SIGTI(:,NAN) generally contains the inverse total cross
+* section only.
+* L4 number of unknowns per energy group and per set of two
+* Legendre orders.
+* KN element-ordered unknown list.
+* QFR element-ordered boundary conditions.
+* LC order of the unit matrices.
+* R unit Cartesian mass matrix.
+* V unit nodal coupling matrix.
+* SUNKNO sources.
+* FUNKNO initial fluxes.
+*
+*Parameters: output
+* FUNKNO right-hand-side of the linear system.
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER IL,NREG,IELEM,ICOL,MAT(NREG),NBMIX,NLF,NVD,NAN,L4,
+ 1 KN(NREG*(1+6*IELEM**2)),LC
+ REAL XX(NREG),YY(NREG),ZZ(NREG),VOL(NREG),SIGTI(NBMIX,NAN),
+ 1 QFR(6*NREG),R(LC,LC),V(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2)
+*----
+* LOCAL VARIABLES
+*----
+ REAL QQ(5,5)
+*
+ IF(ICOL.EQ.3) THEN
+ IF(NVD.EQ.0) THEN
+ NZMAR=NLF+1
+ ELSE IF(NVD.EQ.1) THEN
+ NZMAR=NLF
+ ELSE IF(NVD.EQ.2) THEN
+ NZMAR=65
+ ENDIF
+ ELSE
+ NZMAR=65
+ ENDIF
+ DO 12 I0=1,IELEM
+ DO 11 J0=1,IELEM
+ QQ(I0,J0)=0.0
+ DO 10 K0=2,IELEM
+ QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
+ 10 CONTINUE
+ 11 CONTINUE
+ 12 CONTINUE
+ FACT=REAL(2*IL+1)
+ IF(MOD(IL,2).EQ.0) THEN
+ DO 20 I=1,L4
+ FUNKNO((IL/2)*L4+I)=SUNKNO((IL/2)*L4+I)
+ 20 CONTINUE
+ ENDIF
+*----
+* COMPUTE THE SOLUTION AT ORDER IL.
+*----
+ NUM1=0
+ NUM2=0
+ DO 150 K=1,NREG
+ IBM=MAT(K)
+ IF(IBM.EQ.0) GO TO 150
+ VOL0=VOL(K)
+ IF(MOD(IL,2).EQ.0) THEN
+* EVEN PARITY EQUATION
+ IF(IL.GE.2) THEN
+ DO 32 K3=0,IELEM-1
+ DO 31 K2=0,IELEM-1
+ KN1=KN(NUM1+2+K3*IELEM+K2)
+ KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
+ KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2)
+ KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2)
+ KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2)
+ KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2)
+ IND1=((IL-2)/2)*L4+ABS(KN1)
+ IND2=((IL-2)/2)*L4+ABS(KN2)
+ IND3=((IL-2)/2)*L4+ABS(KN3)
+ IND4=((IL-2)/2)*L4+ABS(KN4)
+ IND5=((IL-2)/2)*L4+ABS(KN5)
+ IND6=((IL-2)/2)*L4+ABS(KN6)
+ DO 30 K1=0,IELEM-1
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ IF(KN1.NE.0) THEN
+ SG=REAL(SIGN(1,KN1))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(IND1)/XX(K)
+ ENDIF
+ IF(KN2.NE.0) THEN
+ SG=REAL(SIGN(1,KN2))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(IND2)/XX(K)
+ ENDIF
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ IF(KN3.NE.0) THEN
+ SG=REAL(SIGN(1,KN3))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(IND3)/YY(K)
+ ENDIF
+ IF(KN4.NE.0) THEN
+ SG=REAL(SIGN(1,KN4))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(IND4)/YY(K)
+ ENDIF
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ IF(KN5.NE.0) THEN
+ SG=REAL(SIGN(1,KN5))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(IND5)/ZZ(K)
+ ENDIF
+ IF(KN6.NE.0) THEN
+ SG=REAL(SIGN(1,KN6))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(IL)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(IND6)/ZZ(K)
+ ENDIF
+ 30 CONTINUE
+ 31 CONTINUE
+ 32 CONTINUE
+ ENDIF
+ ELSE
+ DO 145 K3=0,IELEM-1
+ DO 140 K2=0,IELEM-1
+* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION
+* OF THE EVEN PARITY EQUATION.
+ IF((IL.GE.3).AND.(IELEM.GT.1)) THEN
+ GARSI=SIGTI(IBM,MIN(IL-1,NAN))
+ DO 40 K1=0,IELEM-1
+ IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 40
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*XX(K)*XX(K))
+*
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*YY(K)*YY(K))
+*
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ KND1=((IL-2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL-1)*REAL(IL-2))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(REAL(2*IL-3)*ZZ(K)*ZZ(K))
+ 40 CONTINUE
+ ENDIF
+ IF((IL.LE.NLF-3).AND.(IELEM.GT.1)) THEN
+ GARSI=SIGTI(IBM,MIN(IL+1,NAN))
+ DO 50 K1=0,IELEM-1
+ IF(QQ(K1+1,K1+1).EQ.0.0) GO TO 50
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*XX(K)*XX(K))
+*
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*YY(K)*YY(K))
+*
+ JND1=(IL/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ KND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ FUNKNO(JND1)=FUNKNO(JND1)-(REAL(IL)*REAL(IL+1))*VOL0*
+ 1 QQ(K1+1,K1+1)*GARSI*FUNKNO(KND1)/(FACT*ZZ(K)*ZZ(K))
+ 50 CONTINUE
+ ENDIF
+*
+* ODD PARITY EQUATION
+ KN1=KN(NUM1+2+K3*IELEM+K2)
+ KN2=KN(NUM1+2+IELEM**2+K3*IELEM+K2)
+ KN3=KN(NUM1+2+2*IELEM**2+K3*IELEM+K2)
+ KN4=KN(NUM1+2+3*IELEM**2+K3*IELEM+K2)
+ KN5=KN(NUM1+2+4*IELEM**2+K3*IELEM+K2)
+ KN6=KN(NUM1+2+5*IELEM**2+K3*IELEM+K2)
+ IND1=(IL/2)*L4+ABS(KN1)
+ IND2=(IL/2)*L4+ABS(KN2)
+ IND3=(IL/2)*L4+ABS(KN3)
+ IND4=(IL/2)*L4+ABS(KN4)
+ IND5=(IL/2)*L4+ABS(KN5)
+ IND6=(IL/2)*L4+ABS(KN6)
+ IF((QFR(NUM2+1).NE.0.0).AND.(KN1.NE.0)) THEN
+* XINF SIDE.
+ DO 60 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 60
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN1)
+ FUNKNO(IND1)=FUNKNO(IND1)+0.5*FACT*QFR(NUM2+1)*ZMARS*
+ 1 FUNKNO(INDL)
+ 60 CONTINUE
+ ENDIF
+ IF((QFR(NUM2+2).NE.0.0).AND.(KN2.NE.0)) THEN
+* XSUP SIDE.
+ DO 70 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 70
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN2)
+ FUNKNO(IND2)=FUNKNO(IND2)+0.5*FACT*QFR(NUM2+2)*ZMARS*
+ 1 FUNKNO(INDL)
+ 70 CONTINUE
+ ENDIF
+ IF((QFR(NUM2+3).NE.0.0).AND.(KN3.NE.0)) THEN
+* YINF SIDE.
+ DO 80 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 80
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN3)
+ FUNKNO(IND3)=FUNKNO(IND3)+0.5*FACT*QFR(NUM2+3)*ZMARS*
+ 1 FUNKNO(INDL)
+ 80 CONTINUE
+ ENDIF
+ IF((QFR(NUM2+4).NE.0.0).AND.(KN4.NE.0)) THEN
+* YSUP SIDE.
+ DO 90 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 90
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN4)
+ FUNKNO(IND4)=FUNKNO(IND4)+0.5*FACT*QFR(NUM2+4)*ZMARS*
+ 1 FUNKNO(INDL)
+ 90 CONTINUE
+ ENDIF
+ IF((QFR(NUM2+5).NE.0.0).AND.(KN5.NE.0)) THEN
+* ZINF SIDE.
+ DO 100 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 100
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN5)
+ FUNKNO(IND5)=FUNKNO(IND5)+0.5*FACT*QFR(NUM2+5)*ZMARS*
+ 1 FUNKNO(INDL)
+ 100 CONTINUE
+ ENDIF
+ IF((QFR(NUM2+6).NE.0.0).AND.(KN6.NE.0)) THEN
+* ZSUP SIDE.
+ DO 110 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 110
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+ABS(KN6)
+ FUNKNO(IND6)=FUNKNO(IND6)+0.5*FACT*QFR(NUM2+6)*ZMARS*
+ 1 FUNKNO(INDL)
+ 110 CONTINUE
+ ENDIF
+ IF(IL.LE.NLF-3) THEN
+ DO 130 K1=0,IELEM-1
+ JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K2)*IELEM+K1
+ IF(KN1.NE.0) THEN
+ SG=REAL(SIGN(1,KN1))
+ FUNKNO(IND1)=FUNKNO(IND1)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(JND1)/XX(K)
+ ENDIF
+ IF(KN2.NE.0) THEN
+ SG=REAL(SIGN(1,KN2))
+ FUNKNO(IND2)=FUNKNO(IND2)-SG*REAL(IL+1)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/XX(K)
+ ENDIF
+ JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K3*IELEM+K1)*IELEM+K2
+ IF(KN3.NE.0) THEN
+ SG=REAL(SIGN(1,KN3))
+ FUNKNO(IND3)=FUNKNO(IND3)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(JND1)/YY(K)
+ ENDIF
+ IF(KN4.NE.0) THEN
+ SG=REAL(SIGN(1,KN4))
+ FUNKNO(IND4)=FUNKNO(IND4)-SG*REAL(IL+1)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/YY(K)
+ ENDIF
+ JND1=((IL+2)/2)*L4+KN(NUM1+1)+(K1*IELEM+K3)*IELEM+K2
+ IF(KN5.NE.0) THEN
+ SG=REAL(SIGN(1,KN5))
+ FUNKNO(IND5)=FUNKNO(IND5)-SG*REAL(IL+1)*VOL0*V(1,K1+1)*
+ 1 FUNKNO(JND1)/ZZ(K)
+ ENDIF
+ IF(KN6.NE.0) THEN
+ SG=REAL(SIGN(1,KN6))
+ FUNKNO(IND6)=FUNKNO(IND6)-SG*REAL(IL+1)*VOL0*
+ 1 V(IELEM+1,K1+1)*FUNKNO(JND1)/ZZ(K)
+ ENDIF
+ 130 CONTINUE
+ ENDIF
+ 140 CONTINUE
+ 145 CONTINUE
+ ENDIF
+ NUM1=NUM1+1+6*IELEM**2
+ NUM2=NUM2+6
+ 150 CONTINUE
+ RETURN
+ END