summaryrefslogtreecommitdiff
path: root/Trivac/src/PNFH3E.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/PNFH3E.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/PNFH3E.f')
-rwxr-xr-xTrivac/src/PNFH3E.f384
1 files changed, 384 insertions, 0 deletions
diff --git a/Trivac/src/PNFH3E.f b/Trivac/src/PNFH3E.f
new file mode 100755
index 0000000..622d895
--- /dev/null
+++ b/Trivac/src/PNFH3E.f
@@ -0,0 +1,384 @@
+*DECK PNFH3E
+ SUBROUTINE PNFH3E (IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
+ 1 MAT,SIGTI,SIDE,ZZ,FRZ,QFR,IPERT,KN,LC,R,V,SUNKNO,FUNKNO)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Perform a one-group SPN flux iteration in hexagonal 3D geometry.
+* Raviart-Thomas-Schneider method in hexagonal geometry.
+*
+*Copyright:
+* Copyright (C) 2009 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* IL current Legendre order.
+* NBMIX number of mixtures.
+* NBLOS number of lozenges per direction, taking into account
+* mesh-splitting.
+* IELEM degree of the Lagrangian finite elements: =1 (linear);
+* =2 (parabolic); =3 (cubic); =4 (quartic).
+* ICOL type of quadrature: =1 (analytical integration);
+* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
+* NLF number of Legendre orders for the flux (even number).
+* NVD type of void boundary condition if NLF>0 and ICOL=3.
+* NAN number of Legendre orders for the cross sections.
+* L4 number of unknowns per energy group and per set of two
+* Legendre orders.
+* LL4F number of flux components.
+* MAT index-number of the mixture type assigned to each volume.
+* SIGTI inverse macroscopic cross sections ordered by mixture.
+* SIGTI(:,NAN) generally contains the inverse total cross
+* section only.
+* SIDE side of an hexagon.
+* ZZ Z-directed mesh spacings.
+* FRZ volume fractions for the axial SYME boundary condition.
+* QFR element-ordered boundary conditions.
+* IPERT mixture permutation index.
+* KN ADI permutation indices for the volumes and currents.
+* LC order of the unit matrices.
+* R unit Cartesian mass matrix.
+* V unit nodal coupling matrix.
+* SUNKNO sources.
+* FUNKNO initial fluxes.
+*
+*Parameters: output
+* FUNKNO right-hand-side of the linear system.
+*
+*-----------------------------------------------------------------------
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
+ 1 MAT(3,NBLOS),IPERT(NBLOS),KN(NBLOS,3+6*(IELEM+2)*IELEM**2),LC
+ REAL SIGTI(NBMIX,NAN),SIDE,ZZ(3,NBLOS),FRZ(NBLOS),QFR(NBLOS,8),
+ 1 R(LC,LC),V(LC,LC-1),SUNKNO(L4*NLF/2),FUNKNO(L4*NLF/2)
+*----
+* LOCAL VARIABLES
+*----
+ REAL QQ(5,5)
+ DOUBLE PRECISION FFF,TTTT,UUUU,VOL0,GARSI,FACT,VAR1
+*
+ IF(ICOL.EQ.3) THEN
+ IF(NVD.EQ.0) THEN
+ NZMAR=NLF+1
+ ELSE IF(NVD.EQ.1) THEN
+ NZMAR=NLF
+ ELSE IF(NVD.EQ.2) THEN
+ NZMAR=65
+ ENDIF
+ ELSE
+ NZMAR=65
+ ENDIF
+ DO 16 I0=1,IELEM
+ DO 15 J0=1,IELEM
+ FFF=0.0D0
+ DO 10 K0=2,IELEM
+ FFF=FFF+V(K0,I0)*V(K0,J0)/R(K0,K0)
+ 10 CONTINUE
+ IF(ABS(FFF).LE.1.0E-6) FFF=0.0D0
+ QQ(I0,J0)=REAL(FFF)
+ 15 CONTINUE
+ 16 CONTINUE
+ JOFF=(IL/2)*L4
+ FACT=REAL(2*IL+1)
+ IF(MOD(IL,2).EQ.0) THEN
+ DO 20 I=1,L4
+ FUNKNO(JOFF+I)=SUNKNO(JOFF+I)
+ 20 CONTINUE
+ ENDIF
+*----
+* COMPUTE THE SOLUTION AT ORDER IL.
+*----
+ NELEH=(IELEM+1)*IELEM**2
+ TTTT=0.5D0*SQRT(3.D00)*SIDE*SIDE
+ NUM=0
+ DO 150 KEL=1,NBLOS
+ IF(IPERT(KEL).EQ.0) GO TO 150
+ NUM=NUM+1
+ DZ=ZZ(1,IPERT(KEL))
+ VOL0=TTTT*DZ*FRZ(KEL)
+ UUUU=SIDE*DZ*FRZ(KEL)
+ IF(MOD(IL,2).EQ.0) THEN
+* EVEN PARITY EQUATION
+ IF(IL.GE.2) THEN
+ DO 34 K5=0,1 ! TWO LOZENGES PER HEXAGON
+ DO 33 K4=0,IELEM-1
+ DO 32 K3=0,IELEM-1
+ DO 31 K2=1,IELEM+1
+ KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INW1=JOFF+LL4F+ABS(KNW1)
+ INX1=JOFF+LL4F+ABS(KNX1)
+ INY1=JOFF+LL4F+ABS(KNY1)
+ DO 30 K1=0,IELEM-1
+ IF(V(K2,K1+1).EQ.0.0) GO TO 30
+ IF(K5.EQ.0) THEN
+ SSS=(-1.0)**K1
+ JND1=JOFF+(((NUM-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ JND2=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ JND3=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ ELSE
+ SSS=1.0
+ JND1=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ JND2=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ JND3=JOFF+(((KN(NUM,3)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ ENDIF
+ VAR1=SSS*REAL(IL)*UUUU*V(K2,K1+1)
+ IF(KNW1.NE.0) THEN
+ SG=REAL(SIGN(1,KNW1))
+ FUNKNO(JND1)=FUNKNO(JND1)-SG*REAL(VAR1)*FUNKNO(INW1-L4)
+ ENDIF
+ IF(KNX1.NE.0) THEN
+ SG=REAL(SIGN(1,KNX1))
+ FUNKNO(JND2)=FUNKNO(JND2)-SG*REAL(VAR1)*FUNKNO(INX1-L4)
+ ENDIF
+ IF(KNY1.NE.0) THEN
+ SG=REAL(SIGN(1,KNY1))
+ FUNKNO(JND3)=FUNKNO(JND3)-SG*REAL(VAR1)*FUNKNO(INY1-L4)
+ ENDIF
+ 30 CONTINUE
+ 31 CONTINUE
+ 32 CONTINUE
+ 33 CONTINUE
+ 34 CONTINUE
+ DO 43 K5=0,2 ! THREE LOZENGES PER HEXAGON
+ DO 42 K2=0,IELEM-1
+ DO 41 K1=0,IELEM-1
+ KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
+ KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
+ INZ1=JOFF+LL4F+ABS(KNZ1)
+ INZ2=JOFF+LL4F+ABS(KNZ2)
+ DO 40 K3=0,IELEM-1
+ IF(K5.EQ.0) THEN
+ JND1=JOFF+((((NUM-1)*IELEM)+K3)*IELEM+K2)*IELEM+K1+1
+ ELSE
+ JND1=JOFF+(((KN(NUM,K5)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
+ ENDIF
+ IF(KNZ1.NE.0) THEN
+ SG=REAL(SIGN(1,KNZ1))
+ VAR1=SG*(VOL0/DZ)*REAL(IL)*V(1,K3+1)*FUNKNO(INZ1-L4)
+ FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)
+ ENDIF
+ IF(KNZ2.NE.0) THEN
+ SG=REAL(SIGN(1,KNZ2))
+ VAR1=SG*(VOL0/DZ)*REAL(IL)*V(IELEM+1,K3+1)*
+ 1 FUNKNO(INZ2-L4)
+ FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)
+ ENDIF
+ 40 CONTINUE
+ 41 CONTINUE
+ 42 CONTINUE
+ 43 CONTINUE
+ ENDIF
+ ELSE
+* PARTIAL INVERSION OF THE ODD PARITY EQUATION. MODIFICATION
+* OF THE EVEN PARITY EQUATION.
+ IBM=MAT(1,IPERT(KEL))
+ IF(IBM.EQ.0) GO TO 150
+ IF(IELEM.GT.1) THEN
+ DO 52 K3=0,IELEM-1
+ DO 51 K2=0,IELEM-1
+ DO 50 K1=0,IELEM-1
+ IF(QQ(K3+1,K3+1).EQ.0.0) GO TO 50
+ JND1=JOFF+(NUM-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ JND2=JOFF+(KN(NUM,1)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ JND3=JOFF+(KN(NUM,2)-1)*IELEM**3+K3*IELEM**2+K2*IELEM+K1+1
+ IF(IL.GE.3) THEN
+ GARSI=SIGTI(IBM,MIN(IL-1,NAN))
+ KND1=JND1-L4
+ KND2=JND2-L4
+ KND3=JND3-L4
+ VAR1=(REAL(IL-1)*REAL(IL-2))*VOL0*QQ(K3+1,K3+1)*GARSI
+ 1 /(REAL(2*IL-3)*DZ*DZ)
+ FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)*FUNKNO(KND1)
+ FUNKNO(JND2)=FUNKNO(JND2)-REAL(VAR1)*FUNKNO(KND2)
+ FUNKNO(JND3)=FUNKNO(JND3)-REAL(VAR1)*FUNKNO(KND3)
+ ENDIF
+ IF(IL.LE.NLF-3) THEN
+ GARSI=SIGTI(IBM,MIN(IL+1,NAN))
+ KND1=JND1+L4
+ KND2=JND2+L4
+ KND3=JND3+L4
+ VAR1=(REAL(IL)*REAL(IL+1))*VOL0*QQ(K3+1,K3+1)*GARSI
+ 1 /(FACT*DZ*DZ)
+ FUNKNO(JND1)=FUNKNO(JND1)-REAL(VAR1)*FUNKNO(KND1)
+ FUNKNO(JND2)=FUNKNO(JND2)-REAL(VAR1)*FUNKNO(KND2)
+ FUNKNO(JND3)=FUNKNO(JND3)-REAL(VAR1)*FUNKNO(KND3)
+ ENDIF
+ 50 CONTINUE
+ 51 CONTINUE
+ 52 CONTINUE
+ ENDIF
+*
+* ODD PARITY EQUATION
+ DO 93 K5=0,1 ! TWO LOZENGES PER HEXAGON
+ DO 92 K4=0,IELEM-1
+ DO 91 K3=0,IELEM-1
+ DO 90 K2=1,IELEM+1
+ KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INW1=JOFF+LL4F+ABS(KNW1)
+ INX1=JOFF+LL4F+ABS(KNX1)
+ INY1=JOFF+LL4F+ABS(KNY1)
+ IF(KNW1.NE.0) THEN
+ DO 60 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 60
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INW2=(IL2/2)*L4+LL4F+ABS(KNW1)
+ IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
+ VAR1=0.5*FACT*QFR(NUM,1)*ZMARS*FUNKNO(INW2)
+ FUNKNO(INW1)=FUNKNO(INW1)+REAL(VAR1)
+ ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
+ VAR1=0.5*FACT*QFR(NUM,2)*ZMARS*FUNKNO(INW2)
+ FUNKNO(INW1)=FUNKNO(INW1)+REAL(VAR1)
+ ENDIF
+ 60 CONTINUE
+ ENDIF
+ IF(KNX1.NE.0) THEN
+ DO 70 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 70
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INX2=(IL2/2)*L4+LL4F+ABS(KNX1)
+ IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
+ VAR1=0.5*FACT*QFR(NUM,3)*ZMARS*FUNKNO(INX2)
+ FUNKNO(INX1)=FUNKNO(INX1)+REAL(VAR1)
+ ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
+ VAR1=0.5*FACT*QFR(NUM,4)*ZMARS*FUNKNO(INX2)
+ FUNKNO(INX1)=FUNKNO(INX1)+REAL(VAR1)
+ ENDIF
+ 70 CONTINUE
+ ENDIF
+ IF(KNY1.NE.0) THEN
+ DO 80 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 80
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INY2=(IL2/2)*L4+LL4F+ABS(KNY1)
+ IF((K2.EQ.1).AND.(K5.EQ.0)) THEN
+ VAR1=0.5*FACT*QFR(NUM,5)*ZMARS*FUNKNO(INY2)
+ FUNKNO(INY1)=FUNKNO(INY1)+REAL(VAR1)
+ ELSE IF((K2.EQ.IELEM+1).AND.(K5.EQ.1)) THEN
+ VAR1=0.5*FACT*QFR(NUM,6)*ZMARS*FUNKNO(INY2)
+ FUNKNO(INY1)=FUNKNO(INY1)+REAL(VAR1)
+ ENDIF
+ 80 CONTINUE
+ ENDIF
+ 90 CONTINUE
+ 91 CONTINUE
+ 92 CONTINUE
+ 93 CONTINUE
+ DO 122 K5=0,2 ! THREE LOZENGES PER HEXAGON
+ DO 121 K2=0,IELEM-1
+ DO 120 K1=0,IELEM-1
+ KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
+ KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
+ INZ1=JOFF+LL4F+ABS(KNZ1)
+ INZ2=JOFF+LL4F+ABS(KNZ2)
+ IF((QFR(NUM,7).NE.0.0).AND.(KNZ1.NE.0)) THEN
+* ZINF SIDE.
+ DO 100 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 100
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+LL4F+ABS(KNZ1)
+ VAR1=0.5*FACT*QFR(NUM,7)*ZMARS*FUNKNO(INDL)
+ FUNKNO(INZ1)=FUNKNO(INZ1)+REAL(VAR1)
+ 100 CONTINUE
+ ENDIF
+ IF((QFR(NUM,8).NE.0.0).AND.(KNZ2.NE.0)) THEN
+* ZSUP SIDE.
+ DO 110 IL2=1,NLF-1,2
+ IF(IL2.EQ.IL) GO TO 110
+ ZMARS=PNMAR2(NZMAR,IL2,IL)
+ INDL=(IL2/2)*L4+LL4F+ABS(KNZ2)
+ VAR1=0.5*FACT*QFR(NUM,8)*ZMARS*FUNKNO(INDL)
+ FUNKNO(INZ2)=FUNKNO(INZ2)+REAL(VAR1)
+ 110 CONTINUE
+ ENDIF
+ 120 CONTINUE
+ 121 CONTINUE
+ 122 CONTINUE
+*
+ IF(IL.LE.NLF-3) THEN
+ DO 134 K5=0,1 ! TWO LOZENGES PER HEXAGON
+ DO 133 K4=0,IELEM-1
+ DO 132 K3=0,IELEM-1
+ DO 131 K2=1,IELEM+1
+ KNW1=KN(NUM,3+K5*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNX1=KN(NUM,3+(K5+2)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ KNY1=KN(NUM,3+(K5+4)*NELEH+(K4*IELEM+K3)*(IELEM+1)+K2)
+ INW1=JOFF+LL4F+ABS(KNW1)
+ INX1=JOFF+LL4F+ABS(KNX1)
+ INY1=JOFF+LL4F+ABS(KNY1)
+ DO 130 K1=0,IELEM-1
+ IF(V(K2,K1+1).EQ.0.0) GO TO 130
+ IF(K5.EQ.0) THEN
+ SSS=(-1.0)**K1
+ JND1=JOFF+(((NUM-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ JND2=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ JND3=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K3)*IELEM+K1+1
+ ELSE
+ SSS=1.0
+ JND1=JOFF+(((KN(NUM,1)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ JND2=JOFF+(((KN(NUM,2)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ JND3=JOFF+(((KN(NUM,3)-1)*IELEM+K4)*IELEM+K1)*IELEM+K3+1
+ ENDIF
+ VAR1=SSS*REAL(IL+1)*UUUU*V(K2,K1+1)
+ IF(KNW1.NE.0) THEN
+ SG=REAL(SIGN(1,KNW1))
+ FUNKNO(INW1)=FUNKNO(INW1)-SG*REAL(VAR1)*FUNKNO(JND1+L4)
+ ENDIF
+ IF(KNX1.NE.0) THEN
+ SG=REAL(SIGN(1,KNX1))
+ FUNKNO(INX1)=FUNKNO(INX1)-SG*REAL(VAR1)*FUNKNO(JND2+L4)
+ ENDIF
+ IF(KNY1.NE.0) THEN
+ SG=REAL(SIGN(1,KNY1))
+ FUNKNO(INY1)=FUNKNO(INY1)-SG*REAL(VAR1)*FUNKNO(JND3+L4)
+ ENDIF
+ 130 CONTINUE
+ 131 CONTINUE
+ 132 CONTINUE
+ 133 CONTINUE
+ 134 CONTINUE
+ DO 143 K5=0,2 ! THREE LOZENGES PER HEXAGON
+ DO 142 K2=0,IELEM-1
+ DO 141 K1=0,IELEM-1
+ KNZ1=KN(NUM,3+6*NELEH+2*K5*IELEM**2+K2*IELEM+K1+1)
+ KNZ2=KN(NUM,3+6*NELEH+(2*K5+1)*IELEM**2+K2*IELEM+K1+1)
+ INZ1=JOFF+LL4F+ABS(KNZ1)
+ INZ2=JOFF+LL4F+ABS(KNZ2)
+ DO 140 K3=0,IELEM-1
+ IF(K5.EQ.0) THEN
+ JND1=JOFF+((((NUM-1)*IELEM)+K3)*IELEM+K2)*IELEM+K1+1
+ ELSE
+ JND1=JOFF+(((KN(NUM,K5)-1)*IELEM+K3)*IELEM+K2)*IELEM+K1+1
+ ENDIF
+ IF(KNZ1.NE.0) THEN
+ SG=REAL(SIGN(1,KNZ1))
+ VAR1=SG*(VOL0/DZ)*REAL(IL+1)*V(1,K3+1)*FUNKNO(JND1+L4)
+ FUNKNO(INZ1)=FUNKNO(INZ1)-REAL(VAR1)
+ ENDIF
+ IF(KNZ2.NE.0) THEN
+ SG=REAL(SIGN(1,KNZ2))
+ VAR1=SG*(VOL0/DZ)*REAL(IL+1)*V(IELEM+1,K3+1)*
+ 1 FUNKNO(JND1+L4)
+ FUNKNO(INZ2)=FUNKNO(INZ2)-REAL(VAR1)
+ ENDIF
+ 140 CONTINUE
+ 141 CONTINUE
+ 142 CONTINUE
+ 143 CONTINUE
+ ENDIF
+ ENDIF
+ 150 CONTINUE
+ RETURN
+ END