diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/NSSLR1.f90 | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/NSSLR1.f90')
| -rwxr-xr-x | Trivac/src/NSSLR1.f90 | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/Trivac/src/NSSLR1.f90 b/Trivac/src/NSSLR1.f90 new file mode 100755 index 0000000..6bd0cfe --- /dev/null +++ b/Trivac/src/NSSLR1.f90 @@ -0,0 +1,164 @@ +subroutine NSSLR1(keff, ng, delx, diff, sigr, scat, chi, nusigf, L, R) +! +!----------------------------------------------------------------------- +! +!Purpose: +! Compute the 1D ANM coupling matrices for a single node. +! +!Copyright: +! Copyright (C) 2022 Ecole Polytechnique de Montreal +! This library is free software; you can redistribute it and/or +! modify it under the terms of the GNU Lesser General Public +! License as published by the Free Software Foundation; either +! version 2.1 of the License, or (at your option) any later version +! +!Author(s): A. Hebert +! +!Parameters: input +! keff effective multiplication factor. +! ng number of energy groups. +! delx node width along X-axis. +! diff diffusion coefficient array (cm). +! sigr removal cross section array (cm^-1). +! scat P0 scattering cross section matrix (cm^-1). +! chi fission spectrum array. +! nusigf nu*fission cross section array (cm^-1). +! +!Parameters: output +! L left nodal coupling matrix. +! R right nodal coupling matrix. +! +!----------------------------------------------------------------------- + ! + !---- + ! subroutine arguments + !---- + integer, intent(in) :: ng + real, intent(in) :: keff,delx + real, dimension(ng), intent(in) :: diff, sigr, chi, nusigf + real, dimension(ng,ng), intent(in) :: scat + real(kind=8), dimension(ng,2*ng), intent(out) :: L,R + !---- + ! local variables + !---- + real(kind=8) :: Lambda_r,sqla,mmax2 + !---- + ! allocatable arrays + !---- + complex(kind=8), allocatable, dimension(:,:) :: T,Lambda + real(kind=8), allocatable, dimension(:,:) :: F,DI,T_r,TI,S,Mm, & + & Mp,Nm,Np,GAR1,GAR2 + !---- + ! scratch storage allocation + !---- + allocate(F(ng,ng),T_r(ng,ng),T(ng,ng),TI(ng,ng),DI(ng,ng), & + & Lambda(ng,ng),S(ng,ng),Mm(2*ng,2*ng),Mp(2*ng,2*ng), & + & Nm(ng,2*ng),Np(ng,2*ng),GAR1(ng,2*ng),GAR2(ng,2*ng)) + !---- + ! compute matrices L and R + !---- + Mm(:,:)=0.0d0 + Mp(:,:)=0.0d0 + Nm(:,:)=0.0d0 + Np(:,:)=0.0d0 + DI(:,:)=0.0d0 + xm=0.0 ; xp=delx + do ig=1,ng + do jg=1,ng + if(ig == jg) then + F(ig,ig)=(chi(ig)*nusigf(ig)/keff-sigr(ig))/diff(ig) + else + F(ig,jg)=(chi(ig)*nusigf(jg)/keff+scat(ig,jg))/diff(ig) + endif + enddo + DI(ig,ig)=1.d0/diff(ig) + enddo + maxiter=40 + call ALHQR(ng,ng,F,maxiter,iter,T,Lambda) + mmax2=0.0d0 + do ig=1,ng + do jg=1,ng + mmax2=max(mmax2,abs(aimag(T(ig,jg)))) + enddo + enddo + if(mmax2 > 1.0e-6) then + write(6,'(3h T=)') + do ig=1,ng + write(6,'(1p,12e12.4)') T(ig,:) + enddo + call XABORT('NSSLR1: complex eigenvalues.') + endif + T_r(:,:)=real(T(:,:),8) + do ig=1,ng + Lambda_r=real(Lambda(ig,ig),8) + sqla=sqrt(abs(Lambda_r)) + if(delx*sqla < 1.e-6) then + if(Lambda_r >= 0) then + Mm(ig,ig)=-(delx*sqla)**6/5040.+(delx*sqla)**4/120.-(delx*sqla)**2/6.+1. + Mm(ig,ng+ig)=(delx*sqla)**5/720.-(delx*sqla)**3/24.+(delx*sqla)/2. + Mm(ng+ig,ng+ig)=-sqla + Mp(ng+ig,ig)=((delx*sqla)**6/120.-(delx*sqla)**4/6.+(delx*sqla)**2)/delx + Mp(ng+ig,ng+ig)=(-(delx*sqla)**5/24.+(delx*sqla)**3/2.-(delx*sqla))/delx + Nm(ig,ig)=1. + Np(ig,ig)=-(delx*sqla)**6/720.+(delx*sqla)**4/24.-(delx*sqla)**2/2.+1. + Np(ig,ng+ig)=(delx*sqla)**5/120.-(delx*sqla)**3/6.+(delx*sqla) + else + Mm(ig,ig)=(delx*sqla)**4/120.+(delx*sqla)**3/24.+(delx*sqla)**2/6.+(delx*sqla)/2. + 1. + Mm(ig,ng+ig)=-(delx*sqla)**3/24.+(delx*sqla)**2/6.-(delx*sqla)/2. + 1. + Mm(ng+ig,ig)=-sqla ; Mm(ng+ig,ng+ig)=sqla ; + Mp(ng+ig,ig)=(-(delx*sqla)**4/6.-(delx*sqla)**3/2.-(delx*sqla)**2-(delx*sqla))/delx + Mp(ng+ig,ng+ig)=(-(delx*sqla)**4/6+(delx*sqla)**3/2.-(delx*sqla)**2+(delx*sqla))/delx + Nm(ig,ig)=1. ; Nm(ig,ng+ig)=1. ; + Np(ig,ig)=(delx*sqla)**4/24.+(delx*sqla)**3/6.+(delx*sqla)**2/2.+(delx*sqla)+1. + Np(ig,ng+ig)=(delx*sqla)**4/24.-(delx*sqla)**3/6.+(delx*sqla)**2/2.-(delx*sqla)+1. + endif + else if(Lambda_r >= 0) then + Mm(ig,ig)=(sin(sqla*xp)-sin(sqla*xm))/(delx*sqla) + Mm(ig,ng+ig)=-(cos(sqla*xp)-cos(sqla*xm))/(delx*sqla) + Mm(ng+ig,ig)=sqla*sin(sqla*xm) + Mm(ng+ig,ng+ig)=-sqla*cos(sqla*xm) + Mp(ng+ig,ig)=sqla*sin(sqla*xp) + Mp(ng+ig,ng+ig)=-sqla*cos(sqla*xp) + Nm(ig,ig)=cos(sqla*xm) + Nm(ig,ng+ig)=sin(sqla*xm) + Np(ig,ig)=cos(sqla*xp) + Np(ig,ng+ig)=sin(sqla*xp) + else + Mm(ig,ig)=exp(sqla*xm)*(exp(sqla*(xp-xm))-1.0d0)/(delx*sqla) + Mm(ig,ng+ig)=-exp(-sqla*xm)*(exp(-sqla*(xp-xm))-1.0d0)/(delx*sqla) + Mm(ng+ig,ig)=-sqla*exp(sqla*xm) + Mm(ng+ig,ng+ig)=sqla*exp(-sqla*xm) + Mp(ng+ig,ig)=-sqla*exp(sqla*xp) + Mp(ng+ig,ng+ig)=sqla*exp(-sqla*xp) + Nm(ig,ig)=exp(sqla*xm) + Nm(ig,ng+ig)=exp(-sqla*xm) + Np(ig,ig)=exp(sqla*xp) + Np(ig,ng+ig)=exp(-sqla*xp) + endif + Mp(ig,ig)=Mm(ig,ig) + Mp(ig,ng+ig)=Mm(ig,ng+ig) + enddo + ! + TI(:,:)=T_r(:,:) + call ALINVD(2*ng,Mm,2*ng,ier) + if(ier /= 0) call XABORT('NSSLR1: singular matrix.(1)') + call ALINVD(2*ng,Mp,2*ng,ier) + if(ier /= 0) call XABORT('NSSLR1: singular matrix.(2)') + call ALINVD(ng,TI,ng,ier) + if(ier /= 0) call XABORT('NSSLR1: singular matrix.(3)') + ! + GAR1=matmul(Nm,Mm) ! ng,2*ng + GAR2=matmul(Np,Mp) ! ng,2*ng + S=matmul(TI,DI) ! ng,ng + GAR1=matmul(T_r,GAR1) ! ng,2*ng + GAR2=matmul(T_r,GAR2) ! ng,2*ng + ! + L(:ng,:ng)=matmul(GAR1(:ng,:ng),TI(:ng,:ng)) + L(:ng,ng+1:2*ng)=matmul(GAR1(:ng,ng+1:2*ng),S(:ng,:ng)) + R(:ng,:ng)=matmul(GAR2(:ng,:ng),TI(:ng,:ng)) + R(:ng,ng+1:2*ng)=matmul(GAR2(:ng,ng+1:2*ng),S(:ng,:ng)) + !---- + ! scratch storage deallocation + !---- + deallocate(GAR2,GAR1,Np,Nm,Mp,Mm,S,Lambda,DI,TI,T,T_r,F) +end subroutine NSSLR1 |
