summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDTHR.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/FLDTHR.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/FLDTHR.f')
-rwxr-xr-xTrivac/src/FLDTHR.f300
1 files changed, 300 insertions, 0 deletions
diff --git a/Trivac/src/FLDTHR.f b/Trivac/src/FLDTHR.f
new file mode 100755
index 0000000..d27e6de
--- /dev/null
+++ b/Trivac/src/FLDTHR.f
@@ -0,0 +1,300 @@
+*DECK FLDTHR
+ SUBROUTINE FLDTHR(IPTRK,IPSYS,IPFLUX,LADJ,LL4,ITY,NUN,NGRP,ICL1,
+ 1 ICL2,IMPX,NADI,NSTARD,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Perform thermal (up-scattering) iterations in Trivac.
+*
+*Copyright:
+* Copyright (C) 2002 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* IPTRK L_TRACK pointer to the tracking information.
+* IPSYS L_SYSTEM pointer to system matrices.
+* IPFLUX L_FLUX pointer to the solution.
+* LADJ flag set to .TRUE. for adjoint solution acceleration.
+* LL4 order of the system matrices.
+* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
+* NUN number of unknowns in each energy group.
+* NGRP number of energy groups.
+* ICL1 number of free iterations in one cycle of the inverse power
+* method.
+* ICL2 number of accelerated iterations in one cycle.
+* IMPX print parameter (set to 0 for no printing).
+* NADI number of inner ADI iterations per outer iteration.
+* NSTARD number of restarting iterations with GMRES.
+* MAXINR maximum number of thermal iterations.
+* EPSINR thermal iteration epsilon.
+*
+*Parameters: input/output
+* ITER actual number of thermal iterations.
+* TKT CPU time spent to compute the solution of linear systems.
+* TKB CPU time spent to compute the bilinear products.
+* GRAD1 delta flux for this outer iteration.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
+ INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NADI,NSTARD,MAXINR,ITER
+ REAL EPSINR,TKT,TKB,GRAD1(NUN,NGRP)
+ LOGICAL LADJ
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER(NSTATE=40)
+ INTEGER ISTATE(NSTATE)
+ REAL(KIND=8) DERTOL
+ CHARACTER TEXT12*12,TEXT3*3
+ INTERFACE
+ FUNCTION FLDONE_TEMPLATE(X,B,N,IPTRK,IPSYS,IPFLUX) RESULT(Y)
+ USE GANLIB
+ INTEGER, INTENT(IN) :: N
+ REAL(KIND=8), DIMENSION(N), INTENT(IN) :: X, B
+ REAL(KIND=8), DIMENSION(N) :: Y
+ TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
+ END FUNCTION FLDONE_TEMPLATE
+ END INTERFACE
+ PROCEDURE(FLDONE_TEMPLATE) :: FLDONE
+*----
+* ALLOCATABLE ARRAYS
+*----
+ REAL, DIMENSION(:), ALLOCATABLE :: W
+ REAL, DIMENSION(:,:), ALLOCATABLE :: GAR2
+ REAL, DIMENSION(:,:,:), ALLOCATABLE :: WORK
+ REAL, DIMENSION(:), POINTER :: AGAR
+ REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: DWORK1,DWORK2
+ TYPE(C_PTR) AGAR_PTR
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ IF(MAXINR.EQ.0) RETURN
+ ALLOCATE(GAR2(NUN,NGRP),WORK(LL4,NGRP,3))
+*
+ IF(NSTARD.GT.0) CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
+ NCTOT=ICL1+ICL2
+ IF(ICL2.EQ.0) THEN
+ NCPTM=NCTOT+1
+ ELSE
+ NCPTM=ICL1
+ ENDIF
+ DO 11 IGR=1,NGRP
+ DO 10 I=1,LL4
+ WORK(I,IGR,1)=0.0
+ WORK(I,IGR,2)=0.0
+ WORK(I,IGR,3)=GRAD1(I,IGR)
+ 10 CONTINUE
+ 11 CONTINUE
+ IGDEB=1
+*----
+* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
+*----
+ TEXT3='NO '
+ ITER=2
+ DO
+ CALL KDRCPU(TK1)
+ IF(LADJ) THEN
+* ADJOINT SOLUTION
+ DO 31 IGR=IGDEB,NGRP
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
+ 1 GAR2(1,IGR))
+ DO 30 JGR=1,NGRP
+ IF(JGR.EQ.IGR) GO TO 30
+ WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 30
+ IF(ITY.EQ.13) THEN
+ ALLOCATE(W(LL4))
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
+ 1 W(1))
+ DO 15 I=1,LL4
+ GAR2(I,IGR)=GAR2(I,IGR)-W(I)
+ 15 CONTINUE
+ DEALLOCATE(W)
+ ELSE
+ CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
+ CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
+ DO 20 I=1,ILONG
+ GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
+ 20 CONTINUE
+ ENDIF
+ 30 CONTINUE
+ 31 CONTINUE
+ DO 61 IGR=NGRP,IGDEB,-1
+ DO 50 JGR=NGRP,IGR+1,-1
+ WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 50
+ IF(ITY.EQ.13) THEN
+ ALLOCATE(W(LL4))
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
+ DO 35 I=1,LL4
+ GAR2(I,IGR)=GAR2(I,IGR)+W(I)
+ 35 CONTINUE
+ DEALLOCATE(W)
+ ELSE
+ CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
+ CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
+ DO 40 I=1,ILONG
+ GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
+ 40 CONTINUE
+ ENDIF
+ 50 CONTINUE
+ CALL KDRCPU(TK2)
+ TKB=TKB+(TK2-TK1)
+*
+ CALL KDRCPU(TK1)
+ IF(NSTARD.EQ.0) THEN
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
+ JTER=NADI
+ ELSE
+* use a GMRES solution of the linear system
+ DERTOL=EPSINR
+ ISTATE(39)=IGR
+ CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
+ ALLOCATE(DWORK1(LL4),DWORK2(LL4))
+ DWORK1(:LL4)=GAR2(:LL4,IGR) ! source
+ DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
+ CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
+ 1 IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
+ GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
+ DEALLOCATE(DWORK2,DWORK1)
+ ENDIF
+ DO 60 I=1,LL4
+ WORK(I,IGR,1)=WORK(I,IGR,2)
+ WORK(I,IGR,2)=WORK(I,IGR,3)
+ WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
+ 60 CONTINUE
+ 61 CONTINUE
+ ELSE
+* DIRECT SOLUTION
+ DO 81 IGR=IGDEB,NGRP
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
+ 1 GAR2(1,IGR))
+ DO 80 JGR=1,NGRP
+ IF(JGR.EQ.IGR) GO TO 80
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 80
+ IF(ITY.EQ.13) THEN
+ ALLOCATE(W(LL4))
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
+ 1 W(1))
+ DO 65 I=1,LL4
+ GAR2(I,IGR)=GAR2(I,IGR)-W(I)
+ 65 CONTINUE
+ DEALLOCATE(W)
+ ELSE
+ CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
+ CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
+ DO 70 I=1,ILONG
+ GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
+ 70 CONTINUE
+ ENDIF
+ 80 CONTINUE
+ 81 CONTINUE
+ DO 115 IGR=IGDEB,NGRP
+ DO 100 JGR=1,IGR-1
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 100
+ IF(ITY.EQ.13) THEN
+ ALLOCATE(W(LL4))
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
+ DO 85 I=1,LL4
+ GAR2(I,IGR)=GAR2(I,IGR)+W(I)
+ 85 CONTINUE
+ DEALLOCATE(W)
+ ELSE
+ CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
+ CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
+ DO 90 I=1,ILONG
+ GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
+ 90 CONTINUE
+ ENDIF
+ 100 CONTINUE
+ CALL KDRCPU(TK2)
+ TKB=TKB+(TK2-TK1)
+*
+ CALL KDRCPU(TK1)
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ IF(NSTARD.EQ.0) THEN
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
+ JTER=NADI
+ ELSE
+* use a GMRES solution of the linear system
+ DERTOL=EPSINR
+ ISTATE(39)=IGR
+ CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
+ ALLOCATE(DWORK1(LL4),DWORK2(LL4))
+ DWORK1(:LL4)=GAR2(:LL4,IGR) ! source
+ DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
+ CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
+ 1 IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
+ GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
+ DEALLOCATE(DWORK2,DWORK1)
+ ENDIF
+ DO 110 I=1,LL4
+ WORK(I,IGR,1)=WORK(I,IGR,2)
+ WORK(I,IGR,2)=WORK(I,IGR,3)
+ WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
+ 110 CONTINUE
+ 115 CONTINUE
+ ENDIF
+ IF(MOD(ITER-2,NCTOT).GE.NCPTM) THEN
+ CALL FLD2AC(NGRP,LL4,IGDEB,WORK,ZMU)
+ ELSE
+ ZMU=1.0
+ ENDIF
+ IGDEBO=IGDEB
+ DO 130 IGR=IGDEBO,NGRP
+ GINN=0.0
+ FINN=0.0
+ DO 120 I=1,LL4
+ GINN=MAX(GINN,ABS(WORK(I,IGR,2)-WORK(I,IGR,3)))
+ FINN=MAX(FINN,ABS(WORK(I,IGR,3)))
+ 120 CONTINUE
+ GINN=GINN/FINN
+ IF((GINN.LT.EPSINR).AND.(IGDEB.EQ.IGR)) IGDEB=IGDEB+1
+ 130 CONTINUE
+ CALL KDRCPU(TK2)
+ TKT=TKT+(TK2-TK1)
+ IF(GINN.LT.EPSINR) TEXT3='YES'
+ IF(IMPX.GT.2) WRITE(6,1000) ITER,GINN,EPSINR,IGDEB,ZMU,TEXT3,
+ 1 JTER
+ IF((GINN.LT.EPSINR).OR.(ITER.EQ.MAXINR)) EXIT
+ ITER=ITER+1
+ ENDDO
+*----
+* END OF THERMAL ITERATIONS
+*----
+ DO 175 I=1,LL4
+ DO 170 IGR=1,NGRP
+ GRAD1(I,IGR)=WORK(I,IGR,3)
+ 170 CONTINUE
+ 175 CONTINUE
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(GAR2,WORK)
+ RETURN
+*
+ 1000 FORMAT (10X,3HIN(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
+ 1 7H IGDEB=, I13,6H ACCE=,0P,F12.5,12H CONVERGED=,A3,6H JTER=,
+ 2 I4)
+ END