summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDBMX.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/FLDBMX.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/FLDBMX.f')
-rwxr-xr-xTrivac/src/FLDBMX.f192
1 files changed, 192 insertions, 0 deletions
diff --git a/Trivac/src/FLDBMX.f b/Trivac/src/FLDBMX.f
new file mode 100755
index 0000000..8aaa075
--- /dev/null
+++ b/Trivac/src/FLDBMX.f
@@ -0,0 +1,192 @@
+*DECK FLDBMX
+ FUNCTION FLDBMX(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX) RESULT(X)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Multiplication of A^(-1)B times the harmonic flux in BIVAC.
+*
+*Copyright:
+* Copyright (C) 2020 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* F harmonic flux vector.
+* N number of unknowns in one harmonic.
+* IBLSZ block size of the Arnoldi Hessenberg matrix.
+* ITER Arnoldi iteration index.
+* IPTRK L_TRACK pointer to the tracking information.
+* IPSYS L_SYSTEM pointer to system matrices.
+* IPFLUX L_FLUX pointer to the solution.
+*
+*Parameters: output
+* X result of the multiplication.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER, INTENT(IN) :: N,IBLSZ,ITER
+ COMPLEX(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F
+ COMPLEX(KIND=8), DIMENSION(N,IBLSZ) :: X
+ TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER(NSTATE=40)
+ INTEGER ISTATE(NSTATE)
+ REAL EPSCON(5),TIME(2)
+ CHARACTER TEXT12*12,HSMG*131
+ LOGICAL LUPS
+*----
+* ALLOCATABLE ARRAYS
+*----
+ REAL, DIMENSION(:), ALLOCATABLE :: WORK1,WORK2
+ REAL, DIMENSION(:,:), ALLOCATABLE :: GAF1,GRAD
+*
+* TIME(1) : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
+* TIME(2) : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
+ CALL LCMGET(IPFLUX,'CPU-TIME',TIME)
+ CALL KDRCPU(TK1)
+*----
+* RECOVER INFORMATION FROM IPTRK, IPSYS AND IPFLUX
+*----
+ CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
+ NEL=ISTATE(1)
+ NUN=ISTATE(2)
+ NLF=ISTATE(14)
+ CALL LCMGET(IPSYS,'STATE-VECTOR',ISTATE)
+ NGRP=ISTATE(1)
+ LL4=ISTATE(2)
+ ITY=ISTATE(4)
+ NBMIX=ISTATE(7)
+ NAN=ISTATE(8)
+ IF(ITY.EQ.11) LL4=LL4*NLF/2 ! SPN cases
+ CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
+ ICL1=ISTATE(8)
+ ICL2=ISTATE(9)
+ IREBAL=ISTATE(10)
+ MAXINR=ISTATE(11)
+ NADI=ISTATE(13)
+ IMPX=ISTATE(40)
+ CALL LCMGET(IPFLUX,'EPS-CONVERGE',EPSCON)
+ EPSINR=EPSCON(1)
+ IF(LL4*NGRP.NE.N) CALL XABORT('FLDBMX: INCONSISTENT UNKNOWNS.')
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ ALLOCATE(WORK1(NUN),WORK2(NUN),GAF1(NUN,NGRP),GRAD(NUN,NGRP))
+*----
+* CHECK FOR UP-SCATTERING.
+*----
+ LUPS=.FALSE.
+ DO 20 IGR=1,NGRP-1
+ DO 10 JGR=IGR+1,NGRP
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.GT.0) THEN
+ LUPS=.TRUE.
+ MAXINR=MAX(MAXINR,10)
+ GO TO 30
+ ENDIF
+ 10 CONTINUE
+ 20 CONTINUE
+*----
+* MAIN LOOP OVER MODES.
+*----
+ 30 DO 150 IMOD=1,IBLSZ
+*----
+* COMPUTE B TIMES THE FLUX.
+*----
+ DO 80 IGR=1,NGRP
+ DO 40 I=1,LL4
+ GAF1(I,IGR)=0.0
+ 40 CONTINUE
+ DO 70 JGR=1,NGRP
+ WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 70
+ DO 50 I=1,LL4
+ IOF=(JGR-1)*LL4+I
+ WORK1(I)=REAL(F(IOF,IMOD),KIND=4)
+ IF(ABS(AIMAG(F(IOF,IMOD))).GT.1.0E-8) THEN
+ WRITE(HSMG,'(13HFLDBMX: FLUX(,2I8,2H)=,1P,2E12.4,
+ 1 12H IS COMPLEX.)') IOF,IMOD,F(IOF,IMOD)
+ CALL XABORT(HSMG)
+ ENDIF
+ 50 CONTINUE
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK1(1),WORK2(1))
+ DO 60 I=1,LL4
+ GAF1(I,IGR)=GAF1(I,IGR)+WORK2(I)
+ 60 CONTINUE
+ 70 CONTINUE
+ 80 CONTINUE
+ CALL KDRCPU(TK2)
+ TIME(2)=TIME(2)+(TK2-TK1)
+*----
+* COMPUTE A^(-1)B WITHOUT UP-SCATTERING.
+*----
+ DO 120 IGR=1,NGRP
+ CALL KDRCPU(TK1)
+ DO 90 I=1,LL4
+ GRAD(I,IGR)=GAF1(I,IGR)
+ 90 CONTINUE
+ DO 110 JGR=1,IGR-1
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
+ CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) GO TO 110
+ CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK2(1))
+ DO 100 I=1,LL4
+ GRAD(I,IGR)=GRAD(I,IGR)+WORK2(I)
+ 100 CONTINUE
+ 110 CONTINUE
+ CALL KDRCPU(TK2)
+ TIME(2)=TIME(2)+(TK2-TK1)
+*
+ CALL KDRCPU(TK1)
+ WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
+ IF(ITY.EQ.11) THEN
+* SIMPLIFIED PN BIVAC TRACKING.
+ IF(NAN.EQ.0) CALL XABORT('FLDBMX: SPN-ONLY ALGORITHM.')
+ CALL FLDBSS(TEXT12,IPTRK,IPSYS,LL4,NBMIX,NAN,GRAD(1,IGR),NADI)
+ ELSE
+ CALL MTLDLS(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR))
+ ENDIF
+ CALL KDRCPU(TK2)
+ TIME(1)=TIME(1)+(TK2-TK1)
+ 120 CONTINUE
+*----
+* PERFORM THERMAL (UP-SCATTERING) ITERATIONS.
+*----
+ KTER=0
+ IF((IREBAL.EQ.1).OR.LUPS) THEN
+ CALL FLDBHR(IPTRK,IPSYS,.FALSE.,LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,
+ 1 MAXINR,EPSINR,KTER,TIME(1),TIME(2),GRAD)
+ ENDIF
+ DO 140 IGR=1,NGRP
+ DO 130 I=1,LL4
+ IOF=(IGR-1)*LL4+I
+ X(IOF,IMOD)=GRAD(I,IGR)
+ 130 CONTINUE
+ 140 CONTINUE
+*----
+* END OF LOOP OVER MODES.
+*----
+ 150 CONTINUE
+ CALL LCMPUT(IPFLUX,'CPU-TIME',2,2,TIME)
+ IF(IMPX.GT.10) WRITE(6,200) ITER,KTER
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(GRAD,GAF1,WORK2,WORK1)
+ RETURN
+ 200 FORMAT(49H FLDBMX: MATRIX MULTIPLICATION AT IRAM ITERATION=,I5,
+ 1 20H THERMAL ITERATIONS=,I5)
+ END FUNCTION FLDBMX