summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDARN.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/FLDARN.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/FLDARN.f')
-rwxr-xr-xTrivac/src/FLDARN.f184
1 files changed, 184 insertions, 0 deletions
diff --git a/Trivac/src/FLDARN.f b/Trivac/src/FLDARN.f
new file mode 100755
index 0000000..471e250
--- /dev/null
+++ b/Trivac/src/FLDARN.f
@@ -0,0 +1,184 @@
+*DECK FLDARN
+ SUBROUTINE FLDARN (FLDATV,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,
+ 1 IBLSZ,ADJ,IMPX,EPSOUT,MAXOUT,EVECT,FKEFFV)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Solution of a multigroup eigenvalue system for the calculation of the
+* LMOD first orthogonal harmonics of the diffusion or SPN equation.
+* Use the implicit restarted Arnoldi method (IRAM).
+*
+*Copyright:
+* Copyright (C) 2020 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* FLDATV function pointer for the multiplication of A^(-1)B times the
+* harmonic flux
+* IPTRK L_TRACK pointer to the BIVAC tracking information.
+* IPSYS L_SYSTEM pointer to system matrices.
+* IPFLUX L_FLUX pointer to the solution.
+* LL4 order of the system matrices.
+* NUN number of unknowns in each energy group.
+* NGRP number of energy groups.
+* LMOD number of orthogonal harmonics to compute.
+* IBLSZ block size of the Arnoldi Hessenberg matrix.
+* ADJ adjoint calculation flag.
+* IMPX print parameter: =0: no print; =1: minimum printing.
+* EPSOUT convergence criteria for the flux.
+* MAXOUT maximum number of outer iterations.
+* EVECT initial estimate of the unknown vector.
+*
+*Parameters: output
+* EVECT converged unknown vector.
+* FKEFFV effective multiplication factor of each harmonic.
+*
+*Reference:
+* J. BAGLAMA, "Augmented Block Householder Arnoldi Method,"
+* Linear Algebra Appl., 429, Issue 10, 2315-2334 (2008).
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
+ INTEGER LL4,NUN,NGRP,LMOD,IBLSZ,IMPX,MAXOUT
+ LOGICAL ADJ
+ REAL EPSOUT
+ COMPLEX EVECT(NUN,NGRP,LMOD),FKEFFV(LMOD)
+*----
+* LOCAL VARIABLES
+*----
+ INTERFACE
+ FUNCTION FLDATV(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX) RESULT(X)
+ USE GANLIB
+ INTEGER, INTENT(IN) :: N,IBLSZ,ITER
+ REAL(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F
+ REAL(KIND=8), DIMENSION(N,IBLSZ) :: X
+ TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
+ END FUNCTION FLDATV
+ END INTERFACE
+ REAL TIME(2)
+ REAL(KIND=8) DEPSOUT
+ CHARACTER(LEN=8) TEXT8
+ TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX
+*----
+* ALLOCATABLE ARRAYS
+*----
+ REAL, ALLOCATABLE, DIMENSION(:) :: GAR
+ COMPLEX(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: V, D
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ N=LL4*NGRP
+ ALLOCATE(V(N,LMOD),D(LMOD,LMOD),GAR(NUN))
+*----
+* SET TIMER
+*----
+* TIME(1) : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
+* TIME(2) : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
+ TIME(1)=0.0
+ TIME(2)=0.0
+ CALL LCMPUT(IPFLUX,'CPU-TIME',2,2,TIME)
+*----
+* FLUX INITIALIZATION
+*----
+ DO IMOD=1,LMOD
+ V(:N,IMOD)=1.0D0
+ V(1:MIN(IBLSZ,IMOD)-1,IMOD)=0.0D0
+ ENDDO
+ CALL LCMLEN(IPFLUX,'MODE',ILONG,ITYLCM)
+ IF(ILONG.GT.0) THEN
+ DO IMOD=1,LMOD
+ JPFLUX=LCMGID(IPFLUX,'MODE')
+ CALL LCMLEL(JPFLUX,IMOD,ILONG,ITYLCM)
+ IF(ILONG.EQ.0) CYCLE
+ KPFLUX=LCMGIL(JPFLUX,IMOD)
+ IF(ADJ) THEN
+ CALL LCMLEN(KPFLUX,'AFLUX',LENA,ITYLCM)
+ IF(LENA.EQ.0) CYCLE
+ MPFLUX=LCMGID(KPFLUX,'AFLUX')
+ DO IGR=1,NGRP
+ IF(ITYLCM.EQ.2) THEN
+ CALL LCMGDL(MPFLUX,IGR,GAR)
+ EVECT(:NUN,IGR,IMOD)=GAR(:NUN)
+ ELSE IF(ITYLCM.EQ.6) THEN
+ CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD))
+ ENDIF
+ ENDDO
+ ELSE
+ CALL LCMLEN(KPFLUX,'FLUX',LEND,ITYLCM)
+ IF(LEND.EQ.0) CYCLE
+ MPFLUX=LCMGID(KPFLUX,'FLUX')
+ DO IGR=1,NGRP
+ IF(ITYLCM.EQ.2) THEN
+ CALL LCMGDL(MPFLUX,IGR,GAR)
+ EVECT(:NUN,IGR,IMOD)=GAR(:NUN)
+ ELSE IF(ITYLCM.EQ.6) THEN
+ CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD))
+ ENDIF
+ ENDDO
+ ENDIF
+ DO IGR=1,NGRP
+ DO IUN=1,LL4
+ IOF=(IGR-1)*LL4+IUN
+ V(IOF,IMOD)=EVECT(IUN,IGR,IMOD)
+ ENDDO
+ ENDDO
+ ENDDO
+ ENDIF
+*----
+* CALL IRAM SOLVER
+*----
+ DEPSOUT=EPSOUT
+ CALL ALBEIGS(FLDATV,N,IBLSZ,LMOD,MAXOUT,DEPSOUT,IMPX,ITER,V,D,
+ 1 IPTRK,IPSYS,IPFLUX)
+ DO IMOD=1,LMOD
+ FKEFFV(IMOD)=CMPLX(D(IMOD,IMOD),KIND=4)
+ DO IGR=1,NGRP
+ DO IUN=1,LL4
+ IOF=(IGR-1)*LL4+IUN
+ EVECT(IUN,IGR,IMOD)=CMPLX(V(IOF,IMOD),KIND=4)
+ ENDDO
+ ENDDO
+ ENDDO
+*----
+* PRINTOUTS
+*----
+ IF(IMPX.GE.1) THEN
+ CALL LCMGET(IPFLUX,'CPU-TIME',TIME)
+ WRITE (6,650) ITER,TIME(1),TIME(2),TIME(1)+TIME(2)
+ WRITE (6,670) (FKEFFV(IMOD),IMOD=1,LMOD)
+ ENDIF
+ IF(IMPX.GE.3) THEN
+ TEXT8=' DIRECT'
+ IF(ADJ) TEXT8=' ADJOINT'
+ DO IMOD=1,LMOD
+ WRITE (6,'(/A8,13H HARMONIC NB.,I3/)') TEXT8,IMOD
+ DO IGR=1,NGRP
+ WRITE (6,680) IGR,(REAL(EVECT(I,IGR,IMOD)),I=1,LL4)
+ ENDDO
+ ENDDO
+ ENDIF
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(GAR,D,V)
+ RETURN
+*
+ 650 FORMAT(/31H FLDARN: CONVERGENCE OF IRAM IN,I5,11H ITERATIONS/
+ 1 9X,54HCPU TIME USED TO SOLVE THE TRIANGULAR LINEAR SYSTEMS =,
+ 2 F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,F10.3,20X,
+ 3 16HTOTAL CPU TIME =,F10.3)
+ 670 FORMAT(//21H FLDARN: EIGENVALUES:/(5X,1P,E17.10,3H + ,E17.10,1Hi))
+ 680 FORMAT(43H FLDARN: EIGENVECTOR CORRESPONDING TO GROUP,I4//
+ 1 (5X,1P,8E14.5))
+ END