diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/BIVALL.f | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/BIVALL.f')
| -rwxr-xr-x | Trivac/src/BIVALL.f | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/Trivac/src/BIVALL.f b/Trivac/src/BIVALL.f new file mode 100755 index 0000000..d4c38af --- /dev/null +++ b/Trivac/src/BIVALL.f @@ -0,0 +1,426 @@ +*DECK BIVALL + SUBROUTINE BIVALL (MAXPTS,IHEX,NH,NTH,ITAB) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Unfold any hexagonal geometry to produce a complete domain. +* +*Copyright: +* Copyright (C) 2002 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Benaboud +* +*Parameters: input +* MAXPTS maximum number of hexagons. +* IHEX type of symmetry: +* =1: S30; =2: SA60; =3: SB60; =4: S90; =5: R120; +* =6: R180; =7: SA180; =8: SB180; =9: COMPLETE. +* NH total number of hexagons in the partial hexagonal geometry. +* +*Parameters: output +* NTH total number of hexagons in the complete geometry. +* ITAB correspondance table. +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER MAXPTS,IHEX,NH,NTH,ITAB(MAXPTS) +*---- +* LOCAL VARIABLES +*---- + LOGICAL LPAIR + CHARACTER TEXT4*4 + INTEGER NP(7) + INTEGER, DIMENSION(:), ALLOCATABLE :: J1,J2,J3,K1,K2,K3,K4 +* + NC=0 + IF((IHEX.EQ.1).OR.(IHEX.EQ.10)) THEN + VI = 2.* SQRT(REAL(NH)) - 1. + VP = SQRT(REAL(4*NH+1)) - 1. + IF(AINT(VI).EQ.VI) THEN + NC = INT(VI) + ELSE IF(AINT(VP).EQ.VP) THEN + NC = INT(VP) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (1).') + ENDIF + ELSE IF((IHEX.EQ.2).OR.(IHEX.EQ.11)) THEN + VA = (SQRT(REAL(8*NH+1)) - 1.)/2. + IF(AINT(VA).EQ.VA) THEN + NC = INT(VA) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (2).') + ENDIF + ELSE IF(IHEX.EQ.3) THEN + VI = SQRT(REAL(2*NH-1)) + VP = SQRT(REAL(2*NH)) + IF(AINT(VI).EQ.VI) THEN + NC = INT(VI) + ELSE IF(AINT(VP).EQ.VP) THEN + NC = INT(VP) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (3).') + ENDIF + ELSE IF(IHEX.EQ.4) THEN + VI = SQRT(REAL((4*NH-1)/3)) + VP = SQRT(REAL(4*NH/3)) + IF(AINT(VI).EQ.VI) THEN + NC = INT(VI) + ELSE IF(AINT(VP).EQ.VP) THEN + NC = INT(VP) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (4).') + ENDIF + ELSE IF(IHEX.EQ.5) THEN + VA = (SQRT(REAL(4*(NH-1)+1)) + 1.)/2. + IF(AINT(VA).EQ.VA) THEN + NC = INT(VA) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (5).') + ENDIF + ELSE IF(IHEX.EQ.6) THEN + VA = (SQRT(REAL(8*(NH-1)/3+1)) + 1)/2 + IF(AINT(VA).EQ.VA) THEN + NC = INT(VA) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (6).') + ENDIF + ELSE IF(IHEX.EQ.7) THEN + VA = (SQRT(REAL(24*NH+1)) + 1.)/6. + IF(AINT(VA).EQ.VA) THEN + NC = INT(VA) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (7).') + ENDIF + ELSE IF(IHEX.EQ.8) THEN + VI = (1.+SQRT(REAL(3*(2*NH-1)+1)))/3. + VP = (1.+SQRT(REAL(6*NH+1)))/3. + IF(AINT(VI).EQ.VI) THEN + NC = INT(VI) + ELSE IF(AINT(VP).EQ.VP) THEN + NC = INT(VP) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (8).') + ENDIF + ELSE IF(IHEX.EQ.9) THEN + VA = (SQRT(REAL((4*NH-1)/3)) + 1.)/2. + IF(AINT(VA).EQ.VA) THEN + NC = INT(VA) + ELSE + CALL XABORT('BIVALL: INVALID NUMBER OF HEXAGONS (9).') + ENDIF + ELSE + WRITE(TEXT4,'(I4)') IHEX + CALL XABORT('BIVALL: INVALID TYPE OF SYMMETRY (IHEX='//TEXT4// + 1 ').') + ENDIF + NTH = 1 + 3 * NC * (NC - 1) + IF(NTH.GT.MAXPTS) CALL XABORT('BIVALL: MAXPTS OVERFLOW.') + ITAB(1) = 1 + ALLOCATE(J1(NC+2),J2(NC+2),J3(NC+2),K1(NC+2),K2(NC+2),K3(NC+2), + 1 K4(NC+2)) + J1(1) = 1 + J2(1) = 1 + J3(1) = 1 + K1(1) = 1 + K2(1) = 1 + K3(1) = 1 + DO 10 L = 2,NC+1 + J1(L) = (L-1)*6 + J3(L) = 1+3*L*(L-1) + J2(L) = 1+J3(L-1) + 10 CONTINUE +* + IF((IHEX.EQ.1).OR.(IHEX.EQ.10)) THEN + IL=0 + DO 20 L = 1,NC+1,2 + K1(L) = 1 + IL + K1(L+1) = 1 + IL + IL = IL+1 + 20 CONTINUE + DO 30 L = 2,NC+1 + K2(L) = K2(L-1) + K1(L-1) + 30 CONTINUE + IL=0 + DO 40 L = 1,NC+1,2 + K3(L) = K2(L) + IL + K3(L+1) = K2(L+1) + IL + IL = IL+1 + 40 CONTINUE + ELSE IF((IHEX.EQ.2).OR.(IHEX.EQ.11)) THEN + K1(2) = 2 + DO 50 L = 2,NC+1 + K2(L) = K2(L-1) + L + K1(L+1) = K1(L) + L + 50 CONTINUE + ELSE IF(IHEX.EQ.3) THEN + K1(2) = 2 + DO 60 L = 1,NC+1 + K1(L+1) = K1(L) + L + 60 CONTINUE + IL=0 + DO 70 L = 1,NC+1,2 + K4(L) = 1 + IL + K4(L+1) = 1 + IL + IL = IL + 2 + 70 CONTINUE + DO 80 L = 2,NC+1 + K2(L) = K2(L-1) + K4(L-1) + K3(L) = K3(L-1) + K4(L) + 80 CONTINUE + ELSE IF(IHEX.EQ.4) THEN + IL=0 + DO 90 L = 1,NC+1,2 + K4(L) = L + IL + K4(L+1) = L + IL + 1 + IL = IL + 1 + 90 CONTINUE + DO 100 L = 2,NC+1 + K1(L) = K1(L-1) + K4(L-1) + K3(L) = K3(L-1) + K4(L) +100 CONTINUE + IL=0 + DO 110 L = 1,NC+1,2 + K2(L) = K1(L) + IL + K2(L+1) = K1(L+1) + IL + IL = IL+1 +110 CONTINUE + ELSE IF(IHEX.EQ.5) THEN + DO 120 L = 2,NC+1 + K2(L) = 2 * (L-1) + K1(L) = K1(L-1) + K2(L) +120 CONTINUE + ELSE IF(IHEX.EQ.6) THEN + DO 130 L = 2,NC+1 + K2(L) = 3 * (L-1) + K1(L) = K1(L-1) + K2(L) +130 CONTINUE + ELSE IF(IHEX.EQ.7) THEN + DO 140 L = 2,NC+1 + K2(L) = 3 + K2(L-1) + K1(L) = K1(L-1) + K2(L) +140 CONTINUE + ELSE IF(IHEX.EQ.8) THEN + IL = 1 + IF = 1 + DO 150 L = 2,NC+1,2 + K2(L) = 3 * (L-1) + K2(L+1) = 3 * L + 1 +150 CONTINUE + DO 160 L = 2,NC+1 + IL = IL + K2(L) + IF = IF + K2(L-1) + K1(L) = (IF + IL) / 2 +160 CONTINUE + ENDIF +* + DO 300 N = 2,NTH + I=0 + J=0 + DO 170 I0 = 2,NC + IF((N.GE.J2(I0)).AND.(N.LE.J3(I0))) THEN + I=I0 + GO TO 180 + ENDIF +170 CONTINUE + IF(I.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(1).') +180 DO 190 K = 1,6 + NP(K) = J2(I) + (K - 1) * (I - 1) +190 CONTINUE + NP(7) = J3(I) + COURS2 = REAL(I)/2. + LPAIR = (AINT(COURS2).EQ.COURS2) +* + IF((IHEX.EQ.1).OR.(IHEX.EQ.10)) THEN + IF(N.LE.7) THEN + ITAB(N) = 2 + GO TO 300 + ENDIF + DO 200 L = 1,6 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+1))) J = L +200 CONTINUE + IF(N.EQ.NP(7)) J = 6 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(2).') + IC = 0 + IF(J.EQ.6) IC = 1 + N12 = (NP(J) + NP(J+1)+IC)/2 + N13 = N12 + 1 + IF(N.EQ.NP(J)) THEN + ITAB(N) = K3(I) + ELSE IF(N.EQ.NP(7)) THEN + ITAB(N) = K3(I) - 1 + ELSE IF((N.GT.NP(J)).AND.(N.LT.N12)) THEN + ITAB(N) = K3(I) - (N - NP(J)) + ELSE IF((N.EQ.N12).OR.((N.EQ.N13).AND.LPAIR)) THEN + ITAB(N) = K2(I) + ELSE IF((N.EQ.N13).AND.(.NOT.LPAIR)) THEN + ITAB(N) = K3(I) - (NP(J+1) + IC - N) + ELSE IF((N.GT.N13).AND.(N.LT.NP(J+1))) THEN + ITAB(N) = K3(I) - (NP(J+1) + IC - N) + ENDIF +* + ELSE IF((IHEX.EQ.2).OR.(IHEX.EQ.11)) THEN + DO 210 L = 1,6,2 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+2))) J = L +210 CONTINUE + IF(N.EQ.NP(7)) J = 5 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(3).') + IF(N.EQ.NP(J)) THEN + ITAB(N) = K2(I) + ELSE IF(N.EQ.NP(7)) THEN + ITAB(N) = K2(I) - 1 + ELSE IF((N.GT.NP(J)).AND.(N.LT.NP(J+1))) THEN + ITAB(N) = K2(I) - (N - NP(J)) + ELSE IF(N.EQ.NP(J+1)) THEN + ITAB(N) = K1(I) + ELSE IF((N.GT.NP(J+1)).AND.(N.LT.NP(J+2))) THEN + ITAB(N) = K1(I) + (N - NP(J+1)) + ENDIF +* + ELSE IF(IHEX.EQ.3) THEN + IF(N.LE.7) THEN + ITAB(N) = 2 + GO TO 300 + ENDIF + DO 220 L = 1,6,2 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+2))) J = L +220 CONTINUE + IF(N.EQ.NP(7)) J = 5 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(4).') + IC = 0 + IF(J.EQ.5) IC = 1 + N12 = (NP(J) + NP(J+1))/2 + N13 = N12 + 1 + N14 = (NP(J+1) + NP(J+2)+IC)/2 + N15 = N14 + 1 + IF((N.EQ.NP(J)).OR.(N.EQ.NP(J+1))) THEN + ITAB(N) = K1(I) + ELSE IF(N.EQ.NP(7)) THEN + ITAB(N) = K1(I) - 1 + ELSE IF((N.GT.NP(J)).AND.(N.LT.N12)) THEN + ITAB(N) = K1(I) + (N - NP(J)) + ELSE IF((N.EQ.N12).OR.((N.EQ.N13).AND.LPAIR)) THEN + ITAB(N) = K3(I) + ELSE IF((N.EQ.N13).AND.(.NOT.LPAIR)) THEN + ITAB(N) = K3(I) - 1 + ELSE IF((N.GT.N13).AND.(N.LT.NP(J+1))) THEN + ITAB(N) = K1(I) + (NP(J+1) - N) + ELSE IF((N.GT.NP(J+1)).AND.(N.LT.N14)) THEN + ITAB(N) = K1(I) - (N - NP(J+1)) + ELSE IF((N.EQ.N14).OR.((N.EQ.N15).AND.LPAIR)) THEN + ITAB(N) = K2(I) + ELSE IF((N.EQ.N15).AND.(.NOT.LPAIR)) THEN + ITAB(N) = K2(I) + 1 + ELSE IF((N.GT.N15).AND.(N.LT.NP(J+2))) THEN + ITAB(N) = K1(I) - (NP(J+2) + IC - N) + ENDIF +* + ELSE IF(IHEX.EQ.4) THEN + IF(N.EQ.7) THEN + ITAB(N) = 2 + GO TO 300 + ENDIF + DO 230 L = 1,6,3 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+3))) J = L +230 CONTINUE + IF(N.EQ.NP(7)) J = 4 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(5).') + IC = 0 + IF(J.EQ.4) IC = 1 + N12 = (NP(J+2) + NP(J+3)+IC)/2 + N13 = N12 + 1 + IF((N.EQ.NP(J)).OR.(N.EQ.NP(J+2))) THEN + ITAB(N) = K2(I) + ELSE IF(N.EQ.NP(7)) THEN + ITAB(N) = K2(I) - 1 + ELSE IF((N.GT.NP(J)).AND.(N.LT.NP(J+1))) THEN + ITAB(N) = K2(I) + (N - NP(J)) + ELSE IF(N.EQ.NP(J+1)) THEN + ITAB(N) = K3(I) + ELSE IF((N.GT.NP(J+1)).AND.(N.LE.N12).AND.(N.NE.NP(J+2))) THEN + ITAB(N) = K2(I) - (N - NP(J+2)) + ELSE IF((N.EQ.N13).AND.(.NOT.LPAIR)) THEN + ITAB(N) = K2(I) - (NP(J+3) + IC - N) + ELSE IF((N.EQ.N13).AND.LPAIR) THEN + ITAB(N) = K1(I) + ELSE IF((N.GT.N13).AND.(N.LT.NP(J+3))) THEN + ITAB(N) = K2(I) - (NP(J+3) + IC - N) + ENDIF +* + ELSE IF(IHEX.EQ.5) THEN + IF(N.EQ.7) THEN + ITAB(N) = 3 + GO TO 300 + ELSE IF((N.EQ.11).OR.(N.EQ.15).OR.(N.EQ.19)) THEN + ITAB(N) = 4 + GO TO 300 + ENDIF + DO 240 L = 1,6,2 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+2))) J = L +240 CONTINUE + IF(N.EQ.NP(7)) J = 5 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(6).') + IC = 0 + IF(J.EQ.5) IC = 1 + IF((N.GE.NP(J)).AND.(N.LE.NP(J+1))) THEN + ITAB(N) = K1(I) - (NP(J+1) - N) + ELSE IF((N.GT.NP(J+1)).AND.(N.LE.NP(J+2)+IC)) THEN + ITAB(N) = K1(I) -(2*(NP(J+2)+IC)-NP(J+1)- N) + ENDIF +* + ELSE IF(IHEX.EQ.6) THEN + DO 250 L = 1,6,3 + IF((N.GE.NP(L)).AND.(N.LT.NP(L+3))) J = L +250 CONTINUE + IF(N.EQ.NP(7)) J = 4 + IF(J.EQ.0) CALL XABORT('BIVALL: ALGORITHM FAILURE(7).') + IC = 0 + IF(J.EQ.4) IC = 1 + IF((N.GE.NP(J)).AND.(N.LE.NP(J+1))) THEN + ITAB(N) = K1(I) - (NP(J+1) - N) + ELSE IF((N.GT.NP(J+1)).AND.(N.LE.NP(J+2))) THEN + ITAB(N) = K1(I) - 2*(NP(J+2)-NP(J+1))-(NP(J+2)-N) + ELSE IF((N.GT.NP(J+2)).AND.(N.LE.NP(J+3)+IC)) THEN + ITAB(N) = K1(I)-(2*(NP(J+3)+IC)-NP(J+2)-N) + ENDIF +* + ELSE IF(IHEX.EQ.7) THEN + IF((N.GE.NP(1)).AND.(N.LE.NP(2))) THEN + ITAB(N) = K1(I) - (NP(2) - N) + ELSE IF((N.GT.NP(2)).AND.(N.LE.NP(3))) THEN + ITAB(N) = K1(I) - (NP(3) - NP(2)) + (NP(3) - N) + ELSE IF((N.GT.NP(3)).AND.(N.LE.NP(4))) THEN + ITAB(N) = K1(I) - (NP(4) - NP(2)) + (NP(4) - N) + ELSE IF((N.GT.NP(4)).AND.(N.LE.NP(5))) THEN + ITAB(N) = K1(I) - (NP(5) - NP(2)) + (NP(5) - N) + ELSE IF((N.GT.NP(5)).AND.(N.LE.NP(6))) THEN + ITAB(N) = K1(I) - (NP(4) - NP(2)) - (NP(6) - N) + ELSE IF((N.GT.NP(6)).AND.(N.LE.NP(7)+1)) THEN + ITAB(N) = K1(I) - (NP(3) - NP(2)) - (NP(7) + 1 - N) + ENDIF +* + ELSE IF(IHEX.EQ.8) THEN + N12 = (NP(3) + NP(4)) / 2 + N13 = (NP(6) + NP(7) + 1) / 2 + IF((N.GE.NP(1)).AND.(N.LE.N12)) THEN + ITAB(N) = K1(I) - (NP(2) - N) + ELSE IF((N.GT.N12).AND.(N.LE.N13)) THEN + ITAB(N) = K1(I) + (NP(5) - N) + ELSE IF((N.GT.N13).AND.(N.LE.NP(7)+1)) THEN + ITAB(N) = K1(I) - (NP(6) - NP(5)) - (NP(7) + 1 - N) + ENDIF +* + ELSE IF(IHEX.EQ.9) THEN + ITAB(N) = N + ENDIF +300 CONTINUE + DEALLOCATE(K4,K3,K2,K1,J3,J2,J1) + RETURN + END |
