diff options
| author | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
|---|---|---|
| committer | stainer_t <thomas.stainer@oecd-nea.org> | 2025-09-08 13:48:49 +0200 |
| commit | 7dfcc480ba1e19bd3232349fc733caef94034292 (patch) | |
| tree | 03ee104eb8846d5cc1a981d267687a729185d3f3 /Trivac/src/BIVA05.f | |
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Trivac/src/BIVA05.f')
| -rwxr-xr-x | Trivac/src/BIVA05.f | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/Trivac/src/BIVA05.f b/Trivac/src/BIVA05.f new file mode 100755 index 0000000..41997f9 --- /dev/null +++ b/Trivac/src/BIVA05.f @@ -0,0 +1,266 @@ +*DECK BIVA05 + SUBROUTINE BIVA05(ITY,SGD,IELEM,NBLOS,LL4,NBMIX,IIMAX,SIDE,MAT, + 1 IPERT,KN,QFR,MU,LC,R,V,H,SYS) +* +*----------------------------------------------------------------------- +* +*Purpose: +* Assembly of a within-group (leakage and removal) or out-of-group +* system matrix in a Thomas-Raviart-Schneider (dual) finite element +* diffusion approximation (hexagonal geometry). +* +*Copyright: +* Copyright (C) 2006 Ecole Polytechnique de Montreal +* This library is free software; you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation; either +* version 2.1 of the License, or (at your option) any later version +* +*Author(s): A. Hebert +* +*Parameters: input +* ITY type of assembly: =0: leakage-removal matrix assembly; +* =1: cross section matrix assembly. +* SGD nuclear properties. SGD(:,1) and SGD(:,2) are diffusion +* coefficients. SGD(:,3) are removal macroscopic cross sections. +* IELEM degree of the Lagrangian finite elements: =1 (linear); +* =2 (parabolic); =3 (cubic); =4 (quartic). +* NBLOS number of lozenges per direction, taking into account +* mesh-splitting. +* LL4 number of unknowns per group in BIVAC. +* NBMIX number of macro-mixtures. +* IIMAX allocated dimension of array SYS. +* SIDE side of the hexagons. +* MAT mixture index per lozenge. +* IPERT mixture permutation index. +* KN element-ordered unknown list. +* QFR element-ordered boundary conditions. +* MU indices used with compressed diagonal storage mode matrix SYS. +* LC order of the unit matrices. +* R Cartesian mass matrix. +* V nodal coupling matrix. +* H Piolat (hexagonal) coupling matrix. +* +*Parameters: output +* SYS system matrix. +* +*----------------------------------------------------------------------- +* +*---- +* SUBROUTINE ARGUMENTS +*---- + INTEGER ITY,IELEM,NBLOS,LL4,NBMIX,IIMAX,MAT(3,NBLOS),IPERT(NBLOS), + 1 KN(NBLOS,4+6*IELEM*(IELEM+1)),MU(LL4),LC + REAL SGD(NBMIX,3),SIDE,QFR(NBLOS,6),R(LC,LC),V(LC,LC-1), + 1 H(LC,LC-1),SYS(IIMAX) +*---- +* LOCAL VARIABLES +*---- + PARAMETER(MAXIEL=3) + DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1)) +*---- +* ASSEMBLY OF A SYSTEM MATRIX. +*---- + TTTT=0.5*SQRT(3.0)*SIDE*SIDE + IF(IELEM.GT.MAXIEL) CALL XABORT('BIVA05: MAXIEL OVERFLOW.') + IF(ITY.EQ.0) THEN +* COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX + CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0 + CNORM=SIDE*SIDE/SQRT(3.0) + I=0 + DO 22 JS=1,IELEM + DO 21 JT=1,IELEM+1 + J=0 + I=I+1 + SSS=1.0 + DO 20 IT=1,IELEM + DO 10 IS=1,IELEM+1 + J=J+1 + CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT) + 10 CONTINUE + SSS=-SSS + 20 CONTINUE + 21 CONTINUE + 22 CONTINUE +* +* LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY + NELEM=IELEM*(IELEM+1) + COEF=2.0*SIDE*SIDE/SQRT(3.0) + NUM=0 + DO 70 KEL=1,NBLOS + IF(IPERT(KEL).EQ.0) GO TO 70 + IBM=MAT(1,IPERT(KEL)) + IF(IBM.EQ.0) GO TO 70 + NUM=NUM+1 + DINV=1.0/SGD(IBM,1) + SIG=SGD(IBM,3) + DO 43 K4=0,1 + DO 42 K3=0,IELEM-1 + DO 41 K2=1,IELEM+1 + KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2) + KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2) + KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2) + INW1=ABS(KNW1) + INX1=ABS(KNX1) + INY1=ABS(KNY1) + DO 30 K1=1,IELEM+1 + KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1) + KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1) + KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1) + INW2=ABS(KNW2) + INX2=ABS(KNX2) + INY2=ABS(KNY2) + IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN + L=MU(INW1)-INW1+INW2 + SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2)) + SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1) + IF(INW1.EQ.INW2) THEN + IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,1) + IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,2) + ENDIF + ENDIF + IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN + L=MU(INX1)-INX1+INX2 + SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2)) + SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1) + IF(INX1.EQ.INX2) THEN + IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,3) + IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,4) + ENDIF + ENDIF + IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN + L=MU(INY1)-INY1+INY2 + SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2)) + SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1) + IF(INY1.EQ.INY2) THEN + IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,5) + IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,6) + ENDIF + ENDIF + 30 CONTINUE + DO 40 K1=0,IELEM-1 + IF(V(K2,K1+1).EQ.0.0) GO TO 40 + IF(K4.EQ.0) THEN + SSS=(-1.0)**K1 + JND1=KN(NUM,1)+K3*IELEM+K1 + JND2=KN(NUM,2)+K3*IELEM+K1 + JND3=KN(NUM,3)+K3*IELEM+K1 + ELSE + SSS=1.0 + JND1=KN(NUM,2)+K1*IELEM+K3 + JND2=KN(NUM,3)+K1*IELEM+K3 + JND3=KN(NUM,4)+K1*IELEM+K3 + ENDIF + IF(KNW1.NE.0) THEN + L=MU(JND1)-JND1+INW1 + IF(JND1.LT.INW1) L=MU(INW1)-INW1+JND1 + SG=REAL(SIGN(1,KNW1)) + SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1) + ENDIF + IF(KNX1.NE.0) THEN + L=MU(JND2)-JND2+INX1 + IF(JND2.LT.INX1) L=MU(INX1)-INX1+JND2 + SG=REAL(SIGN(1,KNX1)) + SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1) + ENDIF + IF(KNY1.NE.0) THEN + L=MU(JND3)-JND3+INY1 + IF(JND3.LT.INY1) L=MU(INY1)-INY1+JND3 + SG=REAL(SIGN(1,KNY1)) + SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1) + ENDIF + 40 CONTINUE + 41 CONTINUE + 42 CONTINUE + 43 CONTINUE + ITRS=0 + DO I=1,NBLOS + IF(KN(I,1).EQ.KN(NUM,4)) THEN + ITRS=I + GO TO 45 + ENDIF + ENDDO + CALL XABORT('BIVA05: ITRS FAILURE.') + 45 DO 55 I=1,NELEM + KNW1=KN(ITRS,4+I) + KNX1=KN(NUM,4+2*NELEM+I) + KNY1=KN(NUM,4+4*NELEM+I) + INW1=ABS(KNW1) + INX1=ABS(KNX1) + INY1=ABS(KNY1) + DO 50 J=1,NELEM + KNW2=KN(NUM,4+NELEM+J) + KNX2=KN(NUM,4+3*NELEM+J) + KNY2=KN(NUM,4+5*NELEM+J) + INW2=ABS(KNW2) + INX2=ABS(KNX2) + INY2=ABS(KNY2) + IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.LT.INY2)) THEN + L=MU(INY2)-INY2+INW1 + SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! y w + ELSE IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GT.INY2)) THEN + L=MU(INW1)-INW1+INY2 + SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! w y + ENDIF + IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.LT.INX1)) THEN + L=MU(INX1)-INX1+INW2 + SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! x w + ELSE IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.GT.INX1)) THEN + L=MU(INW2)-INW2+INX1 + SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! w x + ENDIF + IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.LT.INY1)) THEN + L=MU(INY1)-INY1+INX2 + SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! y x + ELSE IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.GT.INY1)) THEN + L=MU(INX2)-INX2+INY1 + SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2)) + SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! x y + ENDIF + 50 CONTINUE + 55 CONTINUE + DO 65 K2=0,IELEM-1 + DO 60 K1=0,IELEM-1 + JND1=KN(NUM,1)+K2*IELEM+K1 + JND2=KN(NUM,2)+K2*IELEM+K1 + JND3=KN(NUM,3)+K2*IELEM+K1 + L=MU(JND1) + SYS(L)=SYS(L)+TTTT*SIG + L=MU(JND2) + SYS(L)=SYS(L)+TTTT*SIG + L=MU(JND3) + SYS(L)=SYS(L)+TTTT*SIG + 60 CONTINUE + 65 CONTINUE + 70 CONTINUE + ELSE +* CROSS SECTION SYSTEM MATRIX ASSEMBLY + NUM=0 + DO 90 KEL=1,NBLOS + IF(IPERT(KEL).EQ.0) GO TO 90 + IBM=MAT(1,IPERT(KEL)) + IF(IBM.EQ.0) GO TO 90 + NUM=NUM+1 + SIG=SGD(IBM,1) + DO 85 K2=0,IELEM-1 + DO 80 K1=0,IELEM-1 + JND1=KN(NUM,1)+K2*IELEM+K1 + JND2=KN(NUM,2)+K2*IELEM+K1 + JND3=KN(NUM,3)+K2*IELEM+K1 + L=MU(JND1) + SYS(L)=SYS(L)+TTTT*SIG + L=MU(JND2) + SYS(L)=SYS(L)+TTTT*SIG + L=MU(JND3) + SYS(L)=SYS(L)+TTTT*SIG + 80 CONTINUE + 85 CONTINUE + 90 CONTINUE + ENDIF + RETURN + END |
