summaryrefslogtreecommitdiff
path: root/Dragon/src/USSEXC.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Dragon/src/USSEXC.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Dragon/src/USSEXC.f')
-rw-r--r--Dragon/src/USSEXC.f383
1 files changed, 383 insertions, 0 deletions
diff --git a/Dragon/src/USSEXC.f b/Dragon/src/USSEXC.f
new file mode 100644
index 0000000..92b5db4
--- /dev/null
+++ b/Dragon/src/USSEXC.f
@@ -0,0 +1,383 @@
+*DECK USSEXC
+ SUBROUTINE USSEXC(MAXNOR,CDOOR,IPLI0,IPTRK,IFTRAK,IMPX,NGRP,IGRP,
+ 1 IASM,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,IREX,SIGGAR,TITR,
+ 2 NIRES,IRES,NBNRS,NOR,CONR,IPPT1,IPPT2,STGAR,SSGAR,VOLMER,XFLUX,
+ 3 UNGAR)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Solution of the flux for the subgroup projection method (SPM) using
+* the response matrix method. This is a non-iterative approach which is
+* useful in exceptional cases where the fixed-point approach fails.
+*
+*Copyright:
+* Copyright (C) 2010 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* MAXNOR maximum order of the probability tables (PT).
+* CDOOR name of the geometry/solution operator.
+* IPLI0 pointer to the internal microscopic cross section library
+* builded by the self-shielding module.
+* IPTRK pointer to the tracking (L_TRACK signature).
+* IFTRAK file unit number used to store the tracks.
+* IMPX print flag (equal to zero for no print).
+* NGRP number of energy groups.
+* IGRP index of energy group being processed.
+* IASM offset of information computed by DOORAV or DOORPV.
+* NBMIX number of mixtures in the internal library.
+* NREG number of regions.
+* NUN number of unknowns in the flux or source vector in one
+* energy group and one band.
+* NL number of Legendre orders required in the calculation
+* (NL=1 or higher).
+* IPHASE type of flux solution (=1 use a native flux solution door;
+* =2 use collision probabilities).
+* MAT index-number of the mixture type assigned to each volume.
+* VOL volumes.
+* KEYFLX pointers of fluxes in unknown vector.
+* IREX fuel region index assigned to each mixture. Equal to zero
+* in non-resonant mixtures or in mixtures not used.
+* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture:
+* (*,*,*,1) total; (*,*,*,2) transport correction;
+* (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
+* TITR title.
+* NIRES exact number of correlated resonant isotopes.
+* IRES index of the resonant isotope being processed.
+* NBNRS number of correlated fuel regions.
+* NOR exact order of the probability table.
+* CONR number density of the resonant isotopes.
+* IPPT1 pointer to LCM directory of each resonant isotope.
+* IPPT2 information related to each resonant isotope:
+* IPPT2(:,1) index of a resonant region (used with infinite
+* dilution case);
+* IPPT2(:,2:4) alias name of resonant isotope.
+* STGAR averaged microscopic total xs in resonant region.
+* SSGAR averaged microscopic scattering xs in resonant region.
+* VOLMER volumes of the resonant and non-resonant regions.
+*
+*Parameters: input/output
+* XFLUX subgroup flux.
+*
+*Parameters: output
+* UNGAR averaged flux unknowns.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+ USE DOORS_MOD
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
+ INTEGER MAXNOR,IFTRAK,IMPX,NGRP,IGRP,IASM,NBMIX,NREG,NUN,NL,
+ 1 IPHASE,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),NIRES,IRES,NBNRS,
+ 2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
+ REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),CONR(NBNRS,NIRES),
+ 1 STGAR(NBNRS,NIRES,NGRP),SSGAR(NBNRS,NIRES,NL,NGRP),
+ 2 VOLMER(0:NBNRS),XFLUX(NBNRS,MAXNOR),UNGAR(NUN,NIRES,NGRP)
+ CHARACTER CDOOR*12,TITR*72
+*----
+* LOCAL VARIABLES
+*----
+ TYPE(C_PTR) IPSYS,KPSYS,JPLIB,KPLIB,IPMACR,IPSOU
+ LOGICAL EMPTY,LCM,LEXAC,REBFLG
+ CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12
+*----
+* ALLOCATABLE ARRAYS
+*----
+ INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
+ REAL, ALLOCATABLE, DIMENSION(:) :: AWPHI,FUN,SUN,SIGG
+ REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,SIGWS,PAV
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
+ TYPE(C_PTR) SIGP_PTR
+ REAL, POINTER, DIMENSION(:) :: SIGP
+*----
+* STATEMENT FUNCTIONS
+*----
+ INM(IND,INOR,NBNRS)=(INOR-1)*NBNRS+IND
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ NORI=NOR(IRES,IGRP)
+ ALLOCATE(WEIGH(MAXNOR,NIRES),TOTPT(MAXNOR,NIRES),
+ 1 SIGWS(MAXNOR,NIRES),PAV(0:NBNRS,0:NBNRS),AWPHI(0:NBNRS),
+ 2 SIGG(0:NBMIX))
+ ALLOCATE(MATRIX(NBNRS*NORI,NBNRS*NORI+1))
+*----
+* RECOVER THE SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
+*----
+ WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
+ CALL LCMSIX(IPLI0,CBDPNM,1)
+ IPSYS=LCMGID(IPLI0,'ASSEMB-RIBON')
+ CALL LCMSIX(IPLI0,' ',2)
+*----
+* COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
+*----
+ ALLOCATE(NPSYS(NORI*(NBNRS+1)))
+ ALLOCATE(FUN(NUN*NORI*(NBNRS+1)),SUN(NUN*NORI*(NBNRS+1)))
+ FUN(:NUN*NORI*(NBNRS+1))=0.0
+ SUN(:NUN*NORI*(NBNRS+1))=0.0
+ DO 50 INOR=1,NORI
+ DO 40 JNBN=0,NBNRS
+ NPSYS((INOR-1)*(NBNRS+1)+JNBN+1)=IASM+INOR
+ T1=0.0
+ DO 10 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 10
+ IND=IREX(IBM)
+ IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
+ T1=T1+SIGGAR(IBM,0,IGRP,3)*VOL(I)
+ ELSE IF(IND.EQ.JNBN) THEN
+ T1=T1+VOL(I)
+ ENDIF
+ 10 CONTINUE
+ SIGG(0:NBMIX)=0.0
+ DO 20 IBM=1,NBMIX
+ IND=IREX(IBM)
+ IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
+ SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,0,IGRP,3)
+ ELSE IF(IND.EQ.JNBN) THEN
+ SIGG(IBM)=SIGG(IBM)+1.0
+ ENDIF
+ 20 ENDDO
+ IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN
+ CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
+ DO 30 I=1,NUN
+ IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/T1
+ 30 CONTINUE
+ 40 CONTINUE
+ 50 CONTINUE
+*----
+* SOLVE FOR THE MULTIBAND FLUX.
+*----
+ IDIR=0
+ NABS=NORI*(NBNRS+1)
+ LEXAC=.FALSE.
+ IPMACR=C_NULL_PTR
+ IPSOU=C_NULL_PTR
+ REBFLG=.FALSE.
+ CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
+ 1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
+ 2 IPSOU,REBFLG)
+*----
+* HOMOGENIZE THE MULTIBAND FLUX.
+*----
+ DO 170 INOR=1,NORI
+ PAV(0:NBNRS,0:NBNRS)=0.0
+ DO 155 JNBN=0,NBNRS
+ DO 150 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 150
+ IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)-1
+ PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF+1)*VOL(I)
+ 150 CONTINUE
+ 155 CONTINUE
+ DO 165 I=0,NBNRS
+ DO 160 J=0,NBNRS
+ IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
+ 160 CONTINUE
+ 165 CONTINUE
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
+ 170 CONTINUE
+ DEALLOCATE(SUN,FUN,NPSYS)
+*----
+* COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
+*----
+ DO 200 JRES=1,NIRES
+ JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
+ CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
+ IF(ILONG.NE.0) THEN
+ KPLIB=LCMGIL(JPLIB,IGRP)
+ CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
+ CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
+ NPART=LENG/MAXNOR
+ IF(LCM) THEN
+ CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
+ CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
+ ELSE
+ ALLOCATE(SIGP(MAXNOR*NPART))
+ CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
+ ENDIF
+ DO 190 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
+ SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
+ 190 CONTINUE
+ IF(.NOT.LCM) DEALLOCATE(SIGP)
+ ELSE
+ WEIGH(1,JRES)=1.0
+ TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
+ SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
+ ENDIF
+ 200 CONTINUE
+*----
+* RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
+*----
+ DO 272 INOR=1,NORI
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
+*----
+* LOOP OVER THE PRIMARY SUBGROUPS. NORI+1 IS THE SOURCE.
+*----
+ DO 271 JNOR=1,NORI+1
+ IF(JNOR.LE.NORI) THEN
+ JNBMAX=NBNRS
+ ELSE
+ JNBMAX=1
+ ENDIF
+ DO 270 JNBN=1,JNBMAX
+ AWPHI(1:NBNRS)=0.0
+ DO 250 I=1,NREG
+ IBM=MAT(I)
+ IF(IBM.EQ.0) GO TO 250
+ JND=IREX(IBM)
+ QQQ=0.0
+ IF(JNOR.EQ.NORI+1) THEN
+ DO 230 JRES=0,NIRES
+ IF(JRES.EQ.0) THEN
+ QQQ=QQQ+SIGGAR(IBM,0,IGRP,3)
+ ELSE IF((JRES.NE.IRES).AND.(JND.GT.0)) THEN
+ QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
+ ENDIF
+ 230 CONTINUE
+ ELSE IF((JND.EQ.JNBN).AND.(JNOR.NE.INOR)) THEN
+ QQQ=QQQ-WEIGH(JNOR,IRES)*CONR(JND,IRES)*SIGWS(JNOR,IRES)
+ ENDIF
+ DO 240 IND=1,NBNRS
+ AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*QQQ*VOL(I)/VOLMER(JND)
+ 240 CONTINUE
+ 250 CONTINUE
+ DO 260 IND=1,NBNRS
+ MATRIX(INM(IND,INOR,NBNRS),INM(JNBN,JNOR,NBNRS))=AWPHI(IND)
+ 260 CONTINUE
+ 270 CONTINUE
+ 271 CONTINUE
+ 272 CONTINUE
+*
+ DO 280 I=1,NBNRS*NORI
+ MATRIX(I,I)=MATRIX(I,I)+1.0D0
+ 280 CONTINUE
+ CALL ALSBD(NBNRS*NORI,1,MATRIX,IER,NBNRS*NORI)
+ IF(IER.NE.0) CALL XABORT('USSEXC: SINGULAR MATRIX.')
+ XFLUX(:NBNRS,:NORI)=0.0
+ DO 295 IND=1,NBNRS
+ DO 290 INOR=1,NORI
+ I1=INM(IND,INOR,NBNRS)
+ XFLUX(IND,INOR)=REAL(MATRIX(I1,NBNRS*NORI+1))
+ 290 CONTINUE
+ 295 CONTINUE
+* END OF RESPONSE MATRIX APPROACH.
+*
+*----
+* COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
+*----
+ DO 340 JRES=1,NIRES
+ JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
+ CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
+ IF(ILONG.NE.0) THEN
+ KPLIB=LCMGIL(JPLIB,IGRP)
+ CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
+ CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
+ NPART=LENG/MAXNOR
+ IF(LCM) THEN
+ CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
+ CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
+ ELSE
+ ALLOCATE(SIGP(MAXNOR*NPART))
+ CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
+ ENDIF
+ DO 330 INOR=1,NOR(JRES,IGRP)
+ WEIGH(INOR,JRES)=SIGP(INOR)
+ SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
+ 330 CONTINUE
+ IF(.NOT.LCM) DEALLOCATE(SIGP)
+ ELSE
+ WEIGH(1,JRES)=1.0
+ SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
+ ENDIF
+ 340 CONTINUE
+*----
+* COMPUTE THE AVERAGED SOURCE.
+*----
+ ALLOCATE(FUN(NUN*NORI),SUN(NUN*NORI))
+ SUN(:NUN*NORI)=0.0
+ ALLOCATE(NPSYS(NORI))
+ DO 385 INOR=1,NORI
+ NPSYS(INOR)=IASM+INOR
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
+ IF(ILENG.EQ.NUN) THEN
+ CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((INOR-1)*NUN+1))
+ ELSE
+ FUN((INOR-1)*NUN+1:INOR*NUN)=0.0
+ ENDIF
+ SIGG(0)=0.0
+ DO 380 IBM=1,NBMIX
+ QQQ=SIGGAR(IBM,0,IGRP,3)
+ IND=IREX(IBM)
+ DO 360 JRES=1,NIRES
+ IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
+ QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
+ ENDIF
+ 360 CONTINUE
+ IF(IND.GT.0) THEN
+ DO 370 JNOR=1,NORI
+ IF(JNOR.NE.INOR) THEN
+ QQQ=QQQ+WEIGH(JNOR,IRES)*CONR(IND,IRES)*SIGWS(JNOR,IRES)*
+ 1 XFLUX(IND,JNOR)
+ ENDIF
+ 370 CONTINUE
+ ENDIF
+ SIGG(IBM)=QQQ*WEIGH(INOR,IRES)
+ 380 CONTINUE
+ IOF=(INOR-1)*NUN
+ CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
+ 385 CONTINUE
+*
+ IF(IMPX.GT.0) THEN
+ WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
+ WRITE(6,'(15H USSEXC: GROUP=,I5,24H. SUBGROUP CALCULATION B,
+ 1 37HASED ON RESPONSE MATRICES. ISOTOPE='',A12,2H''.)') IGRP,
+ 2 TEXT12
+ ENDIF
+*----
+* SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
+*----
+ IPMACR=C_NULL_PTR
+ IPSOU=C_NULL_PTR
+ REBFLG=.FALSE.
+ CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NORI,NBMIX,IDIR,
+ 1 NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,IPSOU,
+ 2 REBFLG)
+ DEALLOCATE(NPSYS)
+*----
+* INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS AND COMPUTE UNGAR,
+* THE REGION-ORDERED FLUX.
+*----
+ UNGAR(:NREG,IRES,IGRP)=0.0
+ DO 420 INOR=1,NORI
+ KPSYS=LCMGIL(IPSYS,IASM+INOR)
+ IOF=(INOR-1)*NUN
+ CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
+*
+ DO 410 I=1,NREG
+ IOF=(INOR-1)*NUN+KEYFLX(I)-1
+ UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF+1)
+ 410 CONTINUE
+ 420 CONTINUE
+ DEALLOCATE(SUN,FUN)
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(MATRIX)
+ DEALLOCATE(SIGG,AWPHI,PAV,SIGWS,TOTPT,WEIGH)
+ RETURN
+ END