summaryrefslogtreecommitdiff
path: root/Dragon/src/SPHTRA.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Dragon/src/SPHTRA.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Dragon/src/SPHTRA.f')
-rw-r--r--Dragon/src/SPHTRA.f181
1 files changed, 181 insertions, 0 deletions
diff --git a/Dragon/src/SPHTRA.f b/Dragon/src/SPHTRA.f
new file mode 100644
index 0000000..b3025a0
--- /dev/null
+++ b/Dragon/src/SPHTRA.f
@@ -0,0 +1,181 @@
+*DECK SPHTRA
+ SUBROUTINE SPHTRA(JPSYS,IEX,NPSYS,KSPH,NREG,NUN,NMERGE,NALBP,
+ 1 NGCOND,SUNMER,FLXMER,NBMIX,MAT,VOL,KEY,MERG,SPH,SIGW,SIGT,
+ 2 COURIN,FUNKNO)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Transport calculation over the macro-geometry using the collision
+* probability technique. Use the Bell factor acceleration strategy.
+*
+*Copyright:
+* Copyright (C) 2002 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* JPSYS pointer to the 'GROUP' directory in the system LCM object.
+* IEX iteration number.
+* NPSYS group masks.
+* KSPH type of SPH factor normalization:
+* <0 asymptotic normalization;
+* =1 average flux normalization;
+* =2 Selengut normalization;
+* =3 generalized Selengut normalization (EDF type);
+* =4 Selengut normalization with surface leakage.
+* NREG number of macro-regions (in the macro calculation).
+* NUN number of unknowns per group in macro-calculation.
+* NMERGE number of merged regions.
+* NALBP number of physical albedos.
+* NGCOND number of condensed groups.
+* SUNMER incoming source (scattering+fission) cross sections.
+* FLXMER flux estimate per mixture.
+* NBMIX number of material mixtures.
+* MAT mixture index per macro-region.
+* VOL volume of macro-regions.
+* KEY position of the flux components associated with each volume.
+* MERG index of merged regions.
+* SPH SPH factors.
+* SIGW transport correction.
+* SIGT macroscopic total cross section.
+* COURIN averaged flux if KSPH=1. Equal to 4 times the incoming current
+* per unit surface if KSPH=2 or 3.
+*
+*Parameters: output
+* FUNKNO neutron flux.
+*
+*Reference(s):
+* P. Blanc-Tranchant, A. Santamarina, G. Willermoz and A. Hebert,
+* "Definition and Validation of a 2-D Transport Scheme for PWR Control
+* Rod Clusters", paper presented at the Int. Conf. on Mathematics and
+* Computation, Reactor Physics and Environmental Analysis in Nuclear
+* Applications, Madrid, Spain, September 27-30, 1999.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) JPSYS
+ INTEGER IEX,NPSYS(NGCOND),KSPH,NREG,NUN,NMERGE,NALBP,NGCOND,NBMIX,
+ 1 MAT(NREG),KEY(NREG),MERG(NBMIX)
+ REAL SUNMER(NMERGE,NGCOND,NGCOND),FLXMER(NMERGE,NGCOND),VOL(NREG),
+ 1 SPH(NMERGE+NALBP,NGCOND),SIGW(NMERGE,NGCOND),SIGT(NMERGE,NGCOND),
+ 2 COURIN(NGCOND),FUNKNO(NUN,NGCOND)
+*----
+* LOCAL VARIABLES
+*----
+ TYPE(C_PTR) KPSYS
+*----
+* ALLOCATABLE ARRAYS
+*----
+ REAL, ALLOCATABLE, DIMENSION(:) :: SIGMA,SUNKNO
+ REAL, ALLOCATABLE, DIMENSION(:,:) :: PIJ
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: WORK2,WORK3
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ ALLOCATE(SIGMA(0:NBMIX),SUNKNO(NREG),PIJ(NREG,NREG))
+ ALLOCATE(WORK2(NREG+1,NREG+1),WORK3(NREG,NREG+1))
+*----
+* GLOBAL SOURCE FOR THE BELL FACTOR METHOD.
+*----
+ DO 100 IGR=1,NGCOND
+ IF(NPSYS(IGR).EQ.0) GO TO 100
+ SUNKNO(:NREG)=0.0
+ IF(IEX.EQ.1) THEN
+ DO 20 IREG=1,NREG
+ IMAT=MAT(IREG)
+ IMERG=MERG(IMAT)
+ IF(IMAT.EQ.0) GO TO 20
+ IF(VOL(IREG).EQ.0.0) GO TO 20
+ SUM=-(SIGT(IMERG,IGR)-SIGW(IMERG,IGR))*FLXMER(IMERG,IGR)
+ DO 10 JGR=1,NGCOND
+ SUM=SUM+SUNMER(IMERG,JGR,IGR)*FLXMER(IMERG,JGR)
+ 10 CONTINUE
+ SUNKNO(IREG)=SUM
+ 20 CONTINUE
+ ELSE
+ DO 30 IREG=1,NREG
+ IMAT=MAT(IREG)
+ IMERG=MERG(IMAT)
+ IF(IMAT.EQ.0) GO TO 30
+ IF(VOL(IREG).EQ.0.0) GO TO 30
+ GARS=-(SIGT(IMERG,IGR)-SIGW(IMERG,IGR))*SPH(IMERG,IGR)
+ SUM=FUNKNO(KEY(IREG),IGR)*GARS
+ DO 25 JGR=1,NGCOND
+ GARS=SUNMER(IMERG,JGR,IGR)*SPH(IMERG,JGR)
+ SUM=SUM+FUNKNO(KEY(IREG),JGR)*GARS
+ 25 CONTINUE
+ SUNKNO(IREG)=SUM
+ 30 CONTINUE
+ ENDIF
+*----
+* COMPUTE THE WORK2 MATRIX.
+*----
+ KPSYS=LCMGIL(JPSYS,IGR)
+ CALL LCMGET(KPSYS,'DRAGON-TXSC',SIGMA)
+ CALL LCMGET(KPSYS,'DRAGON-PCSCT',PIJ)
+ DO 45 I=1,NREG
+ WORK2(I,NREG+1)=0.0D0
+ DO 40 J=1,NREG
+ WORK2(I,NREG+1)=WORK2(I,NREG+1)+PIJ(I,J)*VOL(I)*SUNKNO(J)
+ WORK2(I,J)=PIJ(I,J)*VOL(I)
+ 40 CONTINUE
+ 45 CONTINUE
+*----
+* COMPUTE THE NEUTRON FLUXES.
+*----
+ IF(KSPH.LT.0) THEN
+* ASYMPTOTIC NORMALIZATION.
+ VOLTOT=0.0
+ DO 60 I=1,NREG
+ IF(MAT(I).EQ.-KSPH) THEN
+ VOLTOT=VOLTOT+VOL(I)
+ WORK2(NREG+1,I)=VOL(I)
+ ELSE
+ WORK2(NREG+1,I)=0.0D0
+ ENDIF
+ DO 50 J=1,NREG
+ JBM=MAT(J)
+ WORK2(I,J)=-SIGMA(JBM)*WORK2(I,J)
+ 50 CONTINUE
+ WORK2(I,I)=WORK2(I,I)+VOL(I)
+ 60 CONTINUE
+ WORK2(NREG+1,NREG+1)=COURIN(IGR)*VOLTOT
+ ELSE
+* INTEGRATED FLUX OR SELENGUT NORMALIZATION.
+ VOLTOT=0.0
+ DO 80 I=1,NREG
+ VOLTOT=VOLTOT+VOL(I)
+ WORK2(NREG+1,I)=VOL(I)
+ DO 70 J=1,NREG
+ JBM=MAT(J)
+ WORK2(I,J)=-SIGMA(JBM)*WORK2(I,J)
+ 70 CONTINUE
+ WORK2(I,I)=WORK2(I,I)+VOL(I)
+ 80 CONTINUE
+ WORK2(NREG+1,NREG+1)=COURIN(IGR)*VOLTOT
+ ENDIF
+ CALL ALSVDF(WORK2,NREG+1,NREG,NREG+1,NREG,WORK3(1,NREG+1),
+ 1 WORK3)
+ CALL ALSVDS(WORK2,WORK3(1,NREG+1),WORK3,NREG+1,NREG,NREG+1,
+ 1 NREG,WORK2(1,NREG+1),WORK2(1,NREG+1))
+ FUNKNO(:NUN,IGR)=0.0
+ DO 90 I=1,NREG
+ FUNKNO(KEY(I),IGR)=REAL(WORK2(I,NREG+1))
+ 90 CONTINUE
+ 100 CONTINUE
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(WORK3,WORK2)
+ DEALLOCATE(PIJ,SUNKNO,SIGMA)
+ RETURN
+ END