summaryrefslogtreecommitdiff
path: root/Dragon/src/SNFE2D.F
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Dragon/src/SNFE2D.F
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Dragon/src/SNFE2D.F')
-rw-r--r--Dragon/src/SNFE2D.F610
1 files changed, 610 insertions, 0 deletions
diff --git a/Dragon/src/SNFE2D.F b/Dragon/src/SNFE2D.F
new file mode 100644
index 0000000..76ed90e
--- /dev/null
+++ b/Dragon/src/SNFE2D.F
@@ -0,0 +1,610 @@
+*DECK SNFE2D
+ SUBROUTINE SNFE2D(NUN,NGEFF,IMPX,INCONV,NGIND,LX,LY,IELEM,
+ 1 EELEM,NM,NME,NMX,NMY,NMAT,NPQ,NSCT,MAT,VOL,TOTAL,ESTOPW,
+ 2 NCODE,ZCODE,DELTAE,QEXT,LFIXUP,DU,DE,W,MRM,MRMY,DB,DA,FUNKNO,
+ 3 ISLG,FLUXC,ISBS,NBS,ISBSM,BS,MAXL,WX,WY,WE,CST,ISADPT,IBFP,MN,DN)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Perform one inner iteration for solving SN equations in 2D Cartesian
+* geometry for the HODD method. Energy-angle multithreading. Albedo
+* boundary conditions. Boltzmann-Fokker-Planck (BFP) discretization.
+*
+*Copyright:
+* Copyright (C) 2021 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert, A. A. Calloo and C. Bienvenue
+*
+*Parameters: input
+* NUN total number of unknowns in vector FUNKNO.
+* NGEFF number of energy groups processed in parallel.
+* IMPX print flag (equal to zero for no print).
+* INCONV energy group convergence flag (set to .FALSE. if converged).
+* NGIND energy group indices assign to the NGEFF set.
+* LX number of meshes along X axis.
+* LY number of meshes along Y axis.
+* IELEM measure of order of the spatial approximation polynomial:
+* =1 constant - default for HODD;
+* =2 linear - default for DG;
+* >3 higher orders.
+* EELEM measure of order of the energy approximation polynomial:
+* =1 constant - default for HODD;
+* =2 linear - default for DG;
+* >3 higher orders.
+* NM number of moments in space and energy for flux components
+* NME number of moments for energy boundaries components
+* NMX number of moments for X axis boundaries components
+* NMY number of moments for Y axis boundaries components
+* NMAT number of material mixtures.
+* NPQ number of SN directions in four octants (including zero-weight
+* directions).
+* NSCT maximum number of spherical harmonics moments of the flux.
+* MAT material mixture index in each region.
+* VOL volumes of each region.
+* TOTAL macroscopic total cross sections.
+* ESTOPW stopping power.
+* NCODE boundary condition indices.
+* ZCODE albedos.
+* DELTAE energy group width in MeV.
+* QEXT Legendre components of the fixed source.
+* LFIXUP flag to enable negative flux fixup.
+* DU first direction cosines ($\\mu$).
+* DE second direction cosines ($\\eta$).
+* W weights.
+* MRM quadrature index.
+* MRMY quadrature index.
+* DB diamond-scheme parameter.
+* DA diamond-scheme parameter.
+* MN moment-to-discrete matrix.
+* DN discrete-to-moment matrix.
+* ISBS flag to indicate the presence or not of boundary fixed
+* sources.
+* NBS number of boundary fixed sources.
+* ISBSM flag array to indicate the presence or not of boundary fixed
+* source in each unit surface.
+* BS boundary source array with their intensities.
+* MAXL maximum size of boundary source array.
+* WX spatial X axis closure relation weighting factors.
+* WY spatial Y axis closure relation weighting factors.
+* WE energy closure relation weighting factors.
+* CST constants for the polynomial approximations.
+* ISADPTX flag to enable/disable adaptive X axis flux calculations.
+* ISADPTY flag to enable/disable adaptive Y axis flux calculations.
+* ISADPTE flag to enable/disable adaptive energy flux calculations.
+* IBFP type of energy proparation relation:
+* =1 Galerkin type;
+* =2 heuristic Przybylski and Ligou type.
+*
+*Parameters: input/output
+* FUNKNO Legendre components of the flux and boundary fluxes.
+* FLUXC flux at the cutoff energy.
+*
+*-----------------------------------------------------------------------
+#if defined(_OPENMP)
+ USE omp_lib
+#endif
+*
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER NUN,NGEFF,IMPX,NGIND(NGEFF),LX,LY,IELEM,EELEM,
+ 1 NM,NME,NMX,NMY,NMAT,NPQ,
+ 2 NSCT,MAT(LX,LY),NCODE(4),MRM(NPQ),MRMY(NPQ),ISLG(NGEFF),ISBS,
+ 3 NBS,ISBSM(4*ISBS,NPQ*ISBS,NGEFF*ISBS),MAXL
+ LOGICAL INCONV(NGEFF)
+ REAL VOL(LX,LY),TOTAL(0:NMAT,NGEFF),ESTOPW(0:NMAT,2,NGEFF),
+ 1 ZCODE(4),DELTAE(NGEFF),QEXT(NUN,NGEFF),DU(NPQ),DE(NPQ),W(NPQ),
+ 2 DB(LX,NPQ),DA(LX,LY,NPQ),FUNKNO(NUN,NGEFF),FLUXC(LX,LY),
+ 3 BS(MAXL*ISBS,NBS*ISBS),WX(IELEM+1),WY(IELEM+1),WE(EELEM+1),
+ 4 CST(MAX(IELEM,EELEM)),MN(NPQ,NSCT),DN(NSCT,NPQ)
+ LOGICAL LFIXUP,ISADPT(3)
+*----
+* LOCAL VARIABLES
+*----
+ INTEGER NPQD(4),IIND(4),P
+ REAL BM,BP,TB,WX0(IELEM+1),WY0(IELEM+1),WE0(EELEM+1)
+ DOUBLE PRECISION Q(NM),Q2(NM,NM+1),FEP(NME),
+ 1 XNJ(NMY),V
+ PARAMETER(IUNOUT=6,RLOG=1.0E-8,PI=3.141592654)
+ LOGICAL ISFIX(3)
+*----
+* ALLOCATABLE ARRAYS
+*----
+ INTEGER, ALLOCATABLE, DIMENSION(:,:) :: INDANG
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:) :: FLUX,FLUX0
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:,:,:,:) :: FLUX_G,
+ 1 FLUX0_G
+ DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: XNI
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ ALLOCATE(INDANG(NPQ,4))
+ ALLOCATE(XNI(NMX,LY),FLUX(NM,NSCT,LX,LY),
+ 1 FLUX0(NME,NPQ,LX,LY))
+ ALLOCATE(FLUX_G(NM,NSCT,LX,LY,NGEFF),
+ 1 FLUX0_G(NME,NPQ,LX,LY,NGEFF))
+*----
+* LENGTH OF FUNKNO COMPONENTS (IN ORDER)
+*----
+ LFLX=NM*LX*LY*NSCT
+ LXNI=NMX*LY*NPQ
+ LXNJ=NMY*LX*NPQ
+ LFEP=NME*LX*LY*NPQ
+*----
+* SET OCTANT SWAPPING ORDER.
+*----
+ NPQD(:4)=0
+ INDANG(:NPQ,:4)=0
+ DO M=1,NPQ
+ VU=DU(M)
+ VE=DE(M)
+ IF((VU.GE.0.0).AND.(VE.GE.0.0)) THEN
+ IND=1
+ JND=4
+ ELSE IF((VU.LE.0.0).AND.(VE.GE.0.0)) THEN
+ IND=2
+ JND=3
+ ELSE IF((VU.LE.0.0).AND.(VE.LE.0.0)) THEN
+ IND=3
+ JND=1
+ ELSE
+ IND=4
+ JND=2
+ ENDIF
+ IIND(JND)=IND
+ NPQD(IND)=NPQD(IND)+1
+ INDANG(NPQD(IND),IND)=M
+ ENDDO
+*----
+* MAIN LOOP OVER OCTANTS.
+*----
+
+ FLUX_G(:NM,:NSCT,:LX,:LY,:NGEFF)=0.0D0
+ FLUX0_G(:NME,:NPQ,:LX,:LY,:NGEFF)=0.0D0
+ WE0=WE
+ WX0=WX
+ WY0=WY
+
+ DO 190 JND=1,4
+ IND=IIND(JND)
+*----
+* PRELIMINARY LOOPS FOR SETTING BOUNDARY CONDITIONS.
+*----
+
+*$OMP PARALLEL DO
+*$OMP+ PRIVATE(M,IG,VU,VE,M1,IOF,JOF,IEL,I,J,IPQD)
+*$OMP+ SHARED(FUNKNO) COLLAPSE(2)
+
+ DO 70 IG=1,NGEFF
+ DO 60 IPQD=1,NPQD(IND)
+ IF(.NOT.INCONV(IG)) GO TO 60
+ M=INDANG(IPQD,IND)
+ VU=DU(M)
+ VE=DE(M)
+ ! X-BOUNDARY
+ IF(VU.GT.0.0)THEN
+ M1=MRM(M)
+ IF((NCODE(1).NE.4))THEN
+ DO IEL=1,NMX
+ DO J=1,LY
+ IOF=((M-1)*LY+(J-1))*NMX+IEL
+ JOF=((M1-1)*LY+(J-1))*NMX+IEL
+ FUNKNO(LFLX+IOF,IG)=FUNKNO(LFLX+JOF,IG)
+ ENDDO
+ ENDDO
+ ENDIF
+ ELSEIF(VU.LT.0.0)THEN
+ M1=MRM(M)
+ IF((NCODE(2).NE.4))THEN
+ DO IEL=1,NMX
+ DO J=1,LY
+ IOF=((M-1)*LY+(J-1))*NMX+IEL
+ JOF=((M1-1)*LY+(J-1))*NMX+IEL
+ FUNKNO(LFLX+IOF,IG)=FUNKNO(LFLX+JOF,IG)
+ ENDDO
+ ENDDO
+ ENDIF
+ ENDIF
+ ! Y-BOUNDARY
+ IF(VE.GT.0.0)THEN
+ M1=MRMY(M)
+ IF((NCODE(3).NE.4))THEN
+ DO IEL=1,NMY
+ DO I=1,LX
+ IOF=((M-1)*LX+(I-1))*NMY+IEL
+ JOF=((M1-1)*LX+(I-1))*NMY+IEL
+ FUNKNO(LFLX+LXNI+IOF,IG)=
+ > FUNKNO(LFLX+LXNI+JOF,IG)
+ ENDDO
+ ENDDO
+ ENDIF
+ ELSEIF(VE.LT.0.0)THEN
+ M1=MRMY(M)
+ IF((NCODE(4).NE.4))THEN
+ DO IEL=1,NMY
+ DO I=1,LX
+ IOF=((M-1)*LX+(I-1))*NMY+IEL
+ JOF=((M1-1)*LX+(I-1))*NMY+IEL
+ FUNKNO(LFLX+LXNI+IOF,IG)=
+ > FUNKNO(LFLX+LXNI+JOF,IG)
+ ENDDO
+ ENDDO
+ ENDIF
+ ENDIF
+ 60 CONTINUE
+ 70 CONTINUE
+
+*$OMP END PARALLEL DO
+
+*----
+* MAIN SWAPPING LOOPS FOR SN FLUX CALCULATION
+*----
+
+*$OMP PARALLEL DO
+*$OMP+ PRIVATE(ITID,FLUX,M,IG,XNI,XNJ,Q,Q2,IOF,IER,II,JJ,IEL,I,J,L)
+*$OMP+ PRIVATE(FEP,FLUX0,BM,BP,IIE,IIX,IIY,IE,IX,IY)
+*$OMP+ PRIVATE(ISFIX,JX,JY,JE,TB,V,SIGMA,IBM,J0,I0,IPQD)
+*$OMP+ FIRSTPRIVATE(WE,WX,WY,WE0,WX0,WY0) SHARED(FUNKNO)
+*$OMP+ REDUCTION(+:FLUX_G,FLUX0_G,FLUXC) COLLAPSE(2)
+
+ ! LOOP FOR GROUPS TO EXECUTE IN PARALLEL
+ DO 180 IG=1,NGEFF
+
+ ! LOOP OVER ALL DIRECTIONS
+ DO 170 IPQD=1,NPQD(IND)
+ IF(.NOT.INCONV(IG)) GO TO 170
+ M=INDANG(IPQD,IND)
+ IF(W(M).EQ.0.0) GO TO 170
+
+ ! GET AND PRINT THREAD NUMBER
+#if defined(_OPENMP)
+ ITID=omp_get_thread_num()
+#else
+ ITID=0
+#endif
+ IF(IMPX.GT.5) WRITE(IUNOUT,400) ITID,NGIND(IG),IPQD
+
+ ! INITIALIZE FLUXES
+ FLUX(:NM,:NSCT,:LX,:LY)=0.0D0
+ FLUX0(:NME,:NPQ,:LX,:LY)=0.0D0
+
+*----
+* LOOP OVER X- AND Y-DIRECTED AXES.
+*----
+
+ ! X-AXIS LOOP
+ DO 155 I0=1,LX
+ I=I0
+ IF((IND.EQ.2).OR.(IND.EQ.3)) I=LX+1-I
+
+ ! Y-BOUNDARIES CONDITIONS
+ XNJ=0.0
+ DO IEL=1,NMY
+ IOF=(M-1)*NMY*LX+(I-1)*NMY+IEL
+ IF((IND.EQ.1).OR.(IND.EQ.2)) THEN
+ XNJ(IEL)=FUNKNO(LFLX+LXNI+IOF,IG)*ZCODE(3)
+ ELSE
+ XNJ(IEL)=FUNKNO(LFLX+LXNI+IOF,IG)*ZCODE(4)
+ ENDIF
+ ENDDO
+
+ ! Y-BOUNDARIES FIXED SOURCES
+ IF(ISBS.EQ.1) THEN
+ IF((IND.EQ.3.OR.IND.EQ.4).AND.ISBSM(4,M,IG).NE.0) THEN
+ XNJ(1)=XNJ(1)+BS(I,ISBSM(4,M,IG))
+ ELSE IF((IND.EQ.1.OR.IND.EQ.2).AND.ISBSM(3,M,IG).NE.0) THEN
+ XNJ(1)=XNJ(1)+BS(I,ISBSM(3,M,IG))
+ ENDIF
+ ENDIF
+
+ ! Y-AXIS LOOP
+ DO 140 J0=1,LY
+ J=J0
+ IF((IND.EQ.3).OR.(IND.EQ.4)) J=LY+1-J
+
+ ! X-BOUNDARIES CONDITIONS
+ IF(I0.EQ.1) THEN
+ XNI(:NMX,J)=0.0
+ DO IEL=1,NMX
+ IOF=(M-1)*NMX*LY+(J-1)*NMX+IEL
+ IF((IND.EQ.1).OR.(IND.EQ.4)) THEN
+ XNI(IEL,J)=FUNKNO(LFLX+IOF,IG)*ZCODE(1)
+ ELSE
+ XNI(IEL,J)=FUNKNO(LFLX+IOF,IG)*ZCODE(2)
+ ENDIF
+ ENDDO
+ ENDIF
+
+ ! X-BOUNDARIES FIXED SOURCES
+ IF(ISBS.EQ.1.AND.I0.EQ.1) THEN
+ IF((IND.EQ.2.OR.IND.EQ.3).AND.ISBSM(2,M,IG).NE.0) THEN
+ XNI(1,J)=XNI(1,J)+BS(J,ISBSM(2,M,IG))
+ ELSE IF((IND.EQ.1.OR.IND.EQ.4).AND.ISBSM(1,M,IG).NE.0) THEN
+ XNI(1,J)=XNI(1,J)+BS(J,ISBSM(1,M,IG))
+ ENDIF
+ ENDIF
+
+ ! DATA
+ IBM=MAT(I,J)
+ IF(IBM.EQ.0) GO TO 140
+ SIGMA=TOTAL(IBM,IG)
+ BM=ESTOPW(IBM,1,IG)/DELTAE(IG)
+ BP=ESTOPW(IBM,2,IG)/DELTAE(IG)
+ V=VOL(I,J)
+
+ ! TYPE OF ENERGY PROPAGATION FACTOR
+ IF(IBFP.EQ.1) THEN ! GALERKIN TYPE
+ TB=BM/BP
+ WE(1)=WE(1)*TB
+ WE(2:EELEM+1)=(WE(2:EELEM+1)-1)*TB+1
+ ELSE ! PRZYBYLSKI AND LIGOU TYPE
+ TB=1.0
+ ENDIF
+
+ ! SOURCE DENSITY TERM
+ DO IEL=1,NM
+ Q(IEL)=0.0D0
+ DO P=1,NSCT
+ IOF=((J-1)*LX*NSCT+(I-1)*NSCT+(P-1))*NM+IEL
+ Q(IEL)=Q(IEL)+QEXT(IOF,IG)*MN(M,P)
+ ENDDO
+ ENDDO
+
+ ! ENERGY GROUP UPPER BOUNDARY INCIDENT FLUX
+ DO IEL=1,NME
+ IOF=((J-1)*LX*NPQ+(I-1)*NPQ+(M-1))*NME+IEL
+ FEP(IEL)=QEXT(LFLX+LXNI+LXNJ+IOF,IG)
+ ENDDO
+
+ ISFIX=.FALSE.
+ DO WHILE (.NOT.ALL(ISFIX)) ! LOOP FOR ADAPTIVE CALCULATION
+
+ ! FLUX MOMENT COEFFICIENTS MATRIX
+ Q2(:NM,:NM+1)=0.0D0
+
+ DO IY=1,IELEM
+ DO JY=1,IELEM
+ DO IX=1,IELEM
+ DO JX=1,IELEM
+ DO IE=1,EELEM
+ DO JE=1,EELEM
+ II=IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
+ JJ=IELEM*EELEM*(JY-1)+EELEM*(JX-1)+JE
+
+ ! DIAGONAL TERMS
+ IF(II.EQ.JJ) THEN
+ Q2(II,JJ)=(SIGMA+CST(IE)**2*WE(JE+1)*BP+(IE-1)*(BM-BP))*V
+ 1 +CST(IX)**2*WX(JX+1)*ABS(DA(I,J,M))
+ 2 +CST(IY)**2*WY(JY+1)*ABS(DB(I,M))
+
+ ! UPPER DIAGONAL TERMS
+ ELSEIF(II.LT.JJ) THEN
+ IF(IY.EQ.JY) THEN
+ ! ENERGY TERMS
+ IF(IX.EQ.JX) THEN
+ IF(MOD(IE+JE,2).EQ.1) THEN
+ Q2(II,JJ)=-CST(IE)*CST(JE)*WE(JE+1)*BP*V
+ ELSE
+ Q2(II,JJ)=CST(IE)*CST(JE)*WE(JE+1)*BP*V
+ ENDIF
+ ! X-SPACE TERMS
+ ELSEIF(IE.EQ.JE) THEN
+ IF(MOD(IX+JX,2).EQ.1) THEN
+ Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*DA(I,J,M)
+ ELSE
+ Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(DA(I,J,M))
+ ENDIF
+ ENDIF
+ ! Y-SPACE TERMS
+ ELSEIF(IX.EQ.JX.AND.IE.EQ.JE) THEN
+ IF(MOD(IY+JY,2).EQ.1) THEN
+ Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*DB(I,M)
+ ELSE
+ Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(DB(I,M))
+ ENDIF
+ ENDIF
+
+ ! UNDER DIAGONAL TERMS
+ ELSE
+
+ IF(IY.EQ.JY) THEN
+ ! ENERGY TERMS
+ IF(IX.EQ.JX) THEN
+ IF(MOD(IE+JE,2).EQ.1) THEN
+ Q2(II,JJ)=-CST(IE)*CST(JE)*(WE(JE+1)*BP-BM-BP)*V
+ ELSE
+ Q2(II,JJ)=CST(IE)*CST(JE)*(WE(JE+1)*BP+BM-BP)*V
+ ENDIF
+ ! X-SPACE TERMS
+ ELSEIF(IE.EQ.JE) THEN
+ IF(MOD(IX+JX,2).EQ.1) THEN
+ Q2(II,JJ)=CST(IX)*CST(JX)*(WX(JX+1)-2.0D0)*DA(I,J,M)
+ ELSE
+ Q2(II,JJ)=CST(IX)*CST(JX)*WX(JX+1)*ABS(DA(I,J,M))
+ ENDIF
+ ENDIF
+ ! Y-SPACE TERMS
+ ELSEIF(IX.EQ.JX.AND.IE.EQ.JE) THEN
+ IF(MOD(IY+JY,2).EQ.1) THEN
+ Q2(II,JJ)=CST(IY)*CST(JY)*(WY(JY+1)-2.0D0)*DB(I,M)
+ ELSE
+ Q2(II,JJ)=CST(IY)*CST(JY)*WY(JY+1)*ABS(DB(I,M))
+ ENDIF
+ ENDIF
+ ENDIF
+ ENDDO
+ ENDDO
+ ENDDO
+ ENDDO
+ ENDDO
+ ENDDO
+
+ ! FLUX SOURCE VECTOR
+ DO IY=1,IELEM
+ DO IX=1,IELEM
+ DO IE=1,EELEM
+ II=IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
+ IIE=IELEM*(IY-1)+IX
+ IIX=EELEM*(IY-1)+IE
+ IIY=EELEM*(IX-1)+IE
+ Q2(II,NM+1)=Q(II)*V
+ ! ENERGY TERMS
+ IF(MOD(IE,2).EQ.1) THEN
+ Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM-WE(1)*BP)*FEP(IIE)*V
+ ELSE
+ Q2(II,NM+1)=Q2(II,NM+1)+CST(IE)*(BM+WE(1)*BP)*FEP(IIE)*V
+ ENDIF
+ ! X-SPACE TERMS
+ IF(MOD(IX,2).EQ.1) THEN
+ Q2(II,NM+1)=Q2(II,NM+1)+CST(IX)*(1-WX(1))
+ 1 *XNI(IIX,J)*ABS(DA(I,J,M))
+ ELSE
+ Q2(II,NM+1)=Q2(II,NM+1)-CST(IX)*(1+WX(1))
+ 1 *XNI(IIX,J)*DA(I,J,M)
+ ENDIF
+ ! Y-SPACE TERMS
+ IF(MOD(IY,2).EQ.1) THEN
+ Q2(II,NM+1)=Q2(II,NM+1)+CST(IY)*(1-WY(1))
+ 1 *XNJ(IIY)*ABS(DB(I,M))
+ ELSE
+ Q2(II,NM+1)=Q2(II,NM+1)-CST(IY)*(1+WY(1))
+ 1 *XNJ(IIY)*DB(I,M)
+ ENDIF
+ ENDDO
+ ENDDO
+ ENDDO
+
+ CALL ALSBD(NM,1,Q2,IER,NM)
+ IF(IER.NE.0) CALL XABORT('SNFE2D: SINGULAR MATRIX.')
+
+ ! ADAPTIVE CORRECTION OF WEIGHTING PARAMETERS
+ IF(ANY(ISADPT)) THEN
+ IF(ISADPT(1)) THEN
+ CALL SNADPT(EELEM,NM,IELEM**2,Q2(1:EELEM:1,NM+1),
+ 1 FEP,TB,WE,ISFIX(1))
+ ELSE
+ ISFIX(1)=.TRUE.
+ ENDIF
+ IF(ISADPT(2)) THEN
+ CALL SNADPT(IELEM,NM,EELEM*IELEM,Q2(1:IELEM*EELEM:IELEM,NM+1),
+ 1 XNI(:NMX,J),1.0,WX,ISFIX(2))
+ ELSE
+ ISFIX(2)=.TRUE.
+ ENDIF
+ IF(ISADPT(3)) THEN
+ CALL SNADPT(IELEM,NM,EELEM*IELEM,Q2(1:NM:IELEM*EELEM,NM+1),
+ 1 XNJ,1.0,WY,ISFIX(3))
+ ELSE
+ ISFIX(3)=.TRUE.
+ ENDIF
+ ELSE
+ ISFIX=.TRUE.
+ ENDIF
+
+ END DO ! END OF ADAPTIVE LOOP
+
+ ! CLOSURE RELATIONS
+ IF(IELEM.EQ.1.AND.LFIXUP.AND.(Q2(1,2).LE.RLOG)) Q2(1,2)=0.0
+ XNI(:NMX,J)=WX(1)*XNI(:NMX,J)
+ XNJ(:NMY)=WY(1)*XNJ(:NMY)
+ FEP(:NME)=WE(1)*FEP(:NME)
+ DO IY=1,IELEM
+ DO IX=1,IELEM
+ DO IE=1,EELEM
+ II=IELEM*EELEM*(IY-1)+EELEM*(IX-1)+IE
+ IIE=IELEM*(IY-1)+IX
+ IIX=EELEM*(IY-1)+IE
+ IIY=EELEM*(IX-1)+IE
+ ! ENERGY
+ IF(MOD(IE,2).EQ.1) THEN
+ FEP(IIE)=FEP(IIE)+CST(IE)*WE(IE+1)*Q2(II,NM+1)
+ ELSE
+ FEP(IIE)=FEP(IIE)-CST(IE)*WE(IE+1)*Q2(II,NM+1)
+ ENDIF
+ ! X-SPACE
+ IF(MOD(IX,2).EQ.1) THEN
+ XNI(IIX,J)=XNI(IIX,J)+CST(IX)*WX(IX+1)
+ 1 *Q2(II,NM+1)
+ ELSE
+ XNI(IIX,J)=XNI(IIX,J)+CST(IX)*WX(IX+1)
+ 1 *Q2(II,NM+1)*SIGN(1.0,DA(I,J,M))
+ ENDIF
+ ! Y-SPACE
+ IF(MOD(IY,2).EQ.1) THEN
+ XNJ(IIY)=XNJ(IIY)+CST(IY)*WY(IY+1)
+ 1 *Q2(II,NM+1)
+ ELSE
+ XNJ(IIY)=XNJ(IIY)+CST(IY)*WY(IY+1)
+ 1 *Q2(II,NM+1)*SIGN(1.0,DB(I,M))
+ ENDIF
+ ENDDO
+ ENDDO
+ ENDDO
+ IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNI(1,J).LE.RLOG)) XNI(1,J)=0.0
+ IF(IELEM.EQ.1.AND.LFIXUP.AND.(XNJ(1).LE.RLOG)) XNJ(1)=0.0
+ WE=WE0
+ WX=WX0
+ WY=WY0
+
+ ! SAVE ENERGY GROUP LOWER BOUNDARY OUTGOING FLUX
+ FLUX0(:NME,M,I,J)=REAL(FEP(:NME))/DELTAE(IG)
+
+ ! SAVE LAST GROUP LOWER BOUNDARY FLUX
+ IF(ISLG(IG).EQ.1) THEN
+ FLUXC(I,J)=FLUXC(I,J)+REAL(FLUX0(1,M,I,J))*DN(1,M)
+ ENDIF
+
+ ! SAVE LEGENDRE MOMENT OF THE FLUX
+ DO P=1,NSCT
+ DO IEL=1,NM
+ FLUX(IEL,P,I,J)=FLUX(IEL,P,I,J)+Q2(IEL,NM+1)*DN(P,M)
+ ENDDO
+ ENDDO
+
+ 140 CONTINUE ! END OF Y-LOOP
+
+ ! SAVE Y-BOUNDARY CONDITIONS
+ DO IEL=1,NMY
+ IOF=(M-1)*NMY*LX+(I-1)*NMY+IEL
+ FUNKNO(LFLX+LXNI+IOF,IG)=REAL(XNJ(IEL))
+ ENDDO
+
+ 155 CONTINUE ! END OF X-LOOP
+
+ ! SAVE BOUNDARY CONDITIONS
+ DO J=1,LY
+ DO IEL=1,NMX
+ IOF=(M-1)*NMX*LY+(J-1)*NMX+IEL
+ FUNKNO(LFLX+IOF,IG)=REAL(XNI(IEL,J))
+ ENDDO
+ ENDDO
+
+ ! SAVE FLUX INFORMATION
+ FLUX_G(:,:,:,:,IG)=FLUX_G(:,:,:,:,IG)+FLUX(:,:,:,:)
+ FLUX0_G(:,:,:,:,IG)=FLUX0_G(:,:,:,:,IG)+FLUX0(:,:,:,:)
+
+ 170 CONTINUE ! END OF DIRECTION LOOP
+ 180 CONTINUE ! END OF ENERGY LOOP
+*$OMP END PARALLEL DO
+ 190 CONTINUE ! END OF OCTANT LOOP
+ ! SAVE FLUX INFORMATION
+ DO 200 IG=1,NGEFF
+ IF(.NOT.INCONV(IG)) GO TO 200
+ FUNKNO(:LFLX,IG)=
+ 1 RESHAPE(REAL(FLUX_G(:NM,:NSCT,:LX,:LY,IG)),
+ 2 (/ LFLX /) )
+ FUNKNO(LFLX+LXNI+LXNJ+1:LFLX+LXNI+LXNJ+LFEP,IG)=
+ 1 RESHAPE(REAL(FLUX0_G(:NME,:NPQ,:LX,:LY,IG)), (/ LFEP /) )
+ 200 CONTINUE
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(XNI,FLUX0_G,FLUX_G,FLUX0,FLUX,INDANG)
+ RETURN
+ 400 FORMAT(16H SNFP12: thread=,I8,12H --->(group=,I4,7H angle=,I4,1H))
+ END