summaryrefslogtreecommitdiff
path: root/Dragon/src/MOCSCEL.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Dragon/src/MOCSCEL.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Dragon/src/MOCSCEL.f')
-rw-r--r--Dragon/src/MOCSCEL.f116
1 files changed, 116 insertions, 0 deletions
diff --git a/Dragon/src/MOCSCEL.f b/Dragon/src/MOCSCEL.f
new file mode 100644
index 0000000..84403bd
--- /dev/null
+++ b/Dragon/src/MOCSCEL.f
@@ -0,0 +1,116 @@
+*DECK MOCSCEL
+ SUBROUTINE MOCSCEL(N,NREG,NSOUT,M,NOM,NZON,H,SIGANG,DSIG,EXPT,
+ 1 EXP2,NMU,ZMU)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Calculate coefficients of a track for the cyclic characteristics
+* integration: Linear-Discontinuous-Characteristics scheme with exact
+* exponential and 'source term isolation' option turned off.
+*
+*Copyright:
+* Copyright (C) 2015 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* N number of elements in the current track.
+* NREG number of volumes.
+* NSOUT number of surfaces.
+* M number of material mixtures.
+* NOM vector containing the region number of the different segments
+* of this track.
+* NZON index-number of the mixture type assigned to each volume.
+* H vector containing the lenght of the different segments of this
+* track.
+* SIGANG macroscopic total cross sections and albedos.
+* NMU order of the polar quadrature set.
+* ZMU inverse of polar quadrature cosines.
+*
+*Parameters: output
+* DSIG macroscopic total cross sections.
+* EXPT track coefficient.
+* EXP2 quadratic expansion of (1-exp(-a*L))/L with small argument.
+*
+*-----------------------------------------------------------------------
+*
+ IMPLICIT NONE
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ INTEGER N,NREG,NSOUT,M,NOM(N),NZON(-NSOUT:NREG),NMU
+ REAL SIGANG(-6:M),ZMU(NMU)
+ DOUBLE PRECISION H(N),DSIG(N),EXPT(NMU,N),EXP2(5,NMU,N)
+*----
+* LOCAL VARIABLES
+*----
+ INTEGER I,NOMI,NUMOLD,NZI,IMU
+ DOUBLE PRECISION TAUDMIN,SQ3,HID,TAUD,TEMP,C1,C2,H2,H3
+* tabulated exponential common block
+ PARAMETER ( TAUDMIN=2.0D-2 )
+*
+ SQ3=SQRT(3.0D0)
+ NUMOLD=NOM(1)
+ DO I=1,N
+ NOMI=NOM(I)
+ NZI=NZON(NOMI)
+ DSIG(I)=SIGANG(NZI)
+ IF(NZI.LT.0) THEN
+ DO IMU=1,NMU
+ EXP2(2,IMU,I)=0.D0
+ EXP2(3,IMU,I)=0.D0
+ EXP2(5,IMU,I)=0.D0
+ ENDDO
+ IF(NUMOLD.NE.NOMI) THEN
+ DO IMU=1,NMU
+ EXP2(1,IMU,I)=SIGANG(NZI)
+ EXP2(4,IMU,I)=EXP2(1,IMU,I)
+ EXPT(IMU,I)=EXP2(1,IMU,I)
+ ENDDO
+ ELSE
+ DO IMU=1,NMU
+ EXP2(1,IMU,I)=1.D0
+ EXP2(4,IMU,I)=1.D0
+ EXPT(IMU,I)=EXP2(1,IMU,I)
+ ENDDO
+ ENDIF
+ ELSE
+ DO IMU=1,NMU
+ HID=DBLE(H(I)*ZMU(IMU))
+ TAUD=SIGANG(NZI)*HID
+ IF(TAUD.LE.TAUDMIN) THEN
+* Use Taylor series expansions
+ H2=HID*HID
+ H3=H2*HID
+ EXPT(IMU,I)=TAUD*(0.5D0*TAUD-1.0D0)+1.0D0
+ EXP2(1,IMU,I)=HID*(TAUD*(TAUD/6.0D0-0.5D0)+1.0D0)
+ EXP2(2,IMU,I)=H2*(TAUD*(TAUD-4.0D0)+12.0D0)/24.0D0
+ EXP2(3,IMU,I)=-SQ3*H3*(TAUD*(TAUD-2.0D0)+4.0D0)/24.0D0
+ EXP2(4,IMU,I)=-SQ3*TAUD*(TAUD*(TAUD-2.0D0)+4.0D0)
+ 1 /24.0D0
+ EXP2(5,IMU,I)=H3*(TAUD*TAUD-TAUD+4.0D0)/40.0D0
+ ELSE
+* Use exact exponential
+ EXPT(IMU,I)=EXP(-TAUD)
+ TEMP=(1.D0-EXPT(IMU,I))/TAUD
+ EXP2(1,IMU,I)=TEMP*HID
+ EXP2(2,IMU,I)=HID*(1.D0-TEMP)/DSIG(I)
+ EXP2(3,IMU,I)=-SQ3*HID*(2.0D0-(TAUD+2.0D0)*TEMP)
+ 1 /DSIG(I)**2
+ EXP2(4,IMU,I)=-SQ3*(2.0D0-(TAUD+2.0D0)*TEMP)/TAUD
+ C1=TAUD*(TAUD-6.0D0)-12.0D0
+ C2=TAUD*(3.0D0*TAUD+12.0D0)+12.0D0
+ EXP2(5,IMU,I)=(C1+C2*TEMP)/(TAUD*DSIG(I)**3)
+ ENDIF
+ ENDDO
+ ENDIF
+ NUMOLD=NOMI
+ ENDDO
+*
+ RETURN
+ END