summaryrefslogtreecommitdiff
path: root/Dragon/src/BREERM.f
diff options
context:
space:
mode:
authorstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
committerstainer_t <thomas.stainer@oecd-nea.org>2025-09-08 13:48:49 +0200
commit7dfcc480ba1e19bd3232349fc733caef94034292 (patch)
tree03ee104eb8846d5cc1a981d267687a729185d3f3 /Dragon/src/BREERM.f
Initial commit from Polytechnique Montreal
Diffstat (limited to 'Dragon/src/BREERM.f')
-rw-r--r--Dragon/src/BREERM.f523
1 files changed, 523 insertions, 0 deletions
diff --git a/Dragon/src/BREERM.f b/Dragon/src/BREERM.f
new file mode 100644
index 0000000..b2d146b
--- /dev/null
+++ b/Dragon/src/BREERM.f
@@ -0,0 +1,523 @@
+*DECK BREERM
+ SUBROUTINE BREERM(IPMAC1,NC,NG,NL,LX1,NMIX1,ITRIAL,IMIX,ICODE,
+ 1 ISPH,ZKEFF,B2,ENER,VOL1,FLX1,DC1,TOT1,CHI1,SIGF1,SCAT1,JXM,JXP,
+ 2 FHETXM,FHETXP,ADF1,NGET,ADFREF,IPRINT)
+*
+*-----------------------------------------------------------------------
+*
+*Purpose:
+* Implement the 1D ERM-NEM reflector model.
+*
+*Copyright:
+* Copyright (C) 2021 Ecole Polytechnique de Montreal
+* This library is free software; you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation; either
+* version 2.1 of the License, or (at your option) any later version
+*
+*Author(s): A. Hebert
+*
+*Parameters: input
+* IPMAC1 nodal macrolib.
+* NC number of sn macrolibs.
+* NG number of energy groups.
+* NL Legendre order of TOT1 and SCAT1 arrays (=1 for isotropic
+* scattering in LAB).
+* LX1 number of nodes in the reflector model.
+* NMIX1 number of mixtures in the nodal calculation.
+* ITRIAL type of expansion functions in the nodal calculation.
+* (=1: polynomial; =2: hyperbolic).
+* IMIX mix index of each node.
+* ICODE physical albedo index on each side of the domain.
+* ISPH SPH flag (=0: use discontinuity factors; =1: use SPH factors).
+* ZKEFF effective multiplication factor.
+* B2 buckling.
+* ENER energy limits.
+* VOL1 volumes.
+* FLX1 averaged fluxes
+* DC1 diffusion coefficients.
+* TOT1 total cross sections.
+* CHI1 fission spectra.
+* SIGF1 nu*fission cross sections.
+* SCAT1 scattering P0 cross sections.
+* JXM left boundary currents.
+* JXP right boundary currents.
+* FHETXM left boundary fluxes.
+* FHETXP right boundary fluxes.
+* ADF1 assembly discontinuity factors from macrolib.
+* NGET type of NGET normalization if discontinuity factors
+* (=0: simple; =1: imposed ADF on fuel assembly; =2: recover
+* fuel assembly ADF from input macrolib).
+* ADFREF imposed ADF values on fuel assembly side.
+* IPRINT edition flag.
+*
+*-----------------------------------------------------------------------
+*
+ USE GANLIB
+*----
+* SUBROUTINE ARGUMENTS
+*----
+ TYPE(C_PTR) IPMAC1
+ INTEGER NC,NG,NL,LX1,NMIX1,ITRIAL(NG),IMIX(LX1),ICODE(2),ISPH,
+ 1 NGET,IPRINT
+ REAL ZKEFF(NC),B2(NC),ENER(NG+1),VOL1(NMIX1,NC),FLX1(NMIX1,NG,NC),
+ 1 DC1(NMIX1,NG,NC),TOT1(NMIX1,NG,NL,NC),CHI1(NMIX1,NG,NC),
+ 2 SIGF1(NMIX1,NG,NC),SCAT1(NMIX1,NG,NG,NL,NC),JXM(NMIX1,NG,NC),
+ 3 JXP(NMIX1,NG,NC),FHETXM(NMIX1,NG,NL,NC),FHETXP(NMIX1,NG,NL,NC),
+ 4 ADF1(NMIX1,NG,NC),ADFREF(NG)
+*----
+* LOCAL VARIABLES
+*----
+ PARAMETER (NSTATE=40)
+ INTEGER ISTATE(NSTATE)
+ REAL SX(5),AA11(4,4),A11(5,5),Q(5)
+ CHARACTER(LEN=8) HADF(2)
+ LOGICAL LFISS
+ TYPE(C_PTR) JPMAC1,KPMAC1
+*----
+* ALLOCATABLE ARRAYS
+*----
+ INTEGER, ALLOCATABLE, DIMENSION(:) :: IJJ,NJJ,IPOS
+ REAL, ALLOCATABLE, DIMENSION(:) :: WORK,ETA,VOL
+ REAL, ALLOCATABLE, DIMENSION(:,:) :: AB,ALPHA,FLX,DC,TOT,CHI,SIGF,
+ 1 ADF,AFACTOR,BETA
+ REAL, ALLOCATABLE, DIMENSION(:,:,:) :: FDXM,FDXP,SCAT
+ REAL(KIND=8), ALLOCATABLE, DIMENSION(:) :: TAU,B,X
+ REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:) :: WORK2
+ REAL(KIND=8), ALLOCATABLE, DIMENSION(:,:,:) :: FHOMM,FHOMP
+*----
+* SCRATCH STORAGE ALLOCATION
+*----
+ ALLOCATE(ETA(NG),ALPHA(5,NG),FDXM(NMIX1,NG,NG),FDXP(NMIX1,NG,NG),
+ 1 AFACTOR(NG,NG),BETA(NG,NG),FHOMM(NC,NG,NMIX1),FHOMP(NC,NG,NMIX1))
+ ALLOCATE(VOL(NMIX1),FLX(NMIX1,NG),DC(NMIX1,NG),TOT(NMIX1,NG),
+ 1 CHI(NMIX1,NG),SIGF(NMIX1,NG),SCAT(NMIX1,NG,NG),ADF(NMIX1,NG))
+*----
+* AVERAGE THE OUTPUT NODAL MACROLIB
+*----
+ VOL(:)=0.0
+ FLX(:,:)=0.0
+ DC(:,:)=0.0
+ TOT(:,:)=0.0
+ CHI(:,:)=0.0
+ SIGF(:,:)=0.0
+ SCAT(:,:,:)=0.0
+ ADF(:,:)=0.0
+ DO IC=1,NC
+ DO IBM=1,NMIX1
+ VOL(IBM)=VOL(IBM)+VOL1(IBM,IC)
+ DO IGR=1,NG
+ FLX(IBM,IGR)=FLX(IBM,IGR)+FLX1(IBM,IGR,IC)
+ DC(IBM,IGR)=DC(IBM,IGR)+DC1(IBM,IGR,IC)
+ TOT(IBM,IGR)=TOT(IBM,IGR)+TOT1(IBM,IGR,1,IC)
+ CHI(IBM,IGR)=CHI(IBM,IGR)+CHI1(IBM,IGR,IC)
+ SIGF(IBM,IGR)=SIGF(IBM,IGR)+SIGF1(IBM,IGR,IC)
+ DO JGR=1,NG
+ SCAT(IBM,IGR,JGR)=SCAT(IBM,IGR,JGR)+SCAT1(IBM,IGR,JGR,1,IC)
+ ENDDO
+ ADF(IBM,IGR)=ADF(IBM,IGR)+ADF1(IBM,IGR,IC)
+ ENDDO
+ ENDDO
+ ENDDO
+ VOL(:)=VOL(:)/REAL(NC)
+ FLX(:,:)=FLX(:,:)/REAL(NC)
+ DC(:,:)=DC(:,:)/REAL(NC)
+ TOT(:,:)=TOT(:,:)/REAL(NC)
+ CHI(:,:)=CHI(:,:)/REAL(NC)
+ SIGF(:,:)=SIGF(:,:)/REAL(NC)
+ SCAT(:,:,:)=SCAT(:,:,:)/REAL(NC)
+ ADF(:,:)=ADF(:,:)/REAL(NC)
+*----
+* LOOP OVER CASES
+*----
+ IF(ISPH.EQ.1) CALL XABORT('BREERM: SPH OPTION NOT IMPLEMENTED.')
+ J_FUEL=0
+ DO IC=1,NC
+*----
+* SET AND SOLVE NODAL SYSTEM
+*----
+ J_FUEL=0
+ DO J=1,LX1
+ IBM=IMIX(J)
+ IF(IBM.EQ.0) CYCLE
+ LFISS=.FALSE.
+ DO IGR=1,NG
+ IF(SIGF(IBM,IGR).GT.0.0) LFISS=.TRUE.
+ ENDDO
+ IF(LFISS) THEN
+ J_FUEL=J
+ ALLOCATE(AB(4*NG,4*NG+1))
+ DO IGR=1,NG
+ DIFF=DC1(IBM,IGR,IC)
+ SIGR=TOT1(IBM,IGR,1,IC)+B2(IC)*DIFF-SCAT1(IBM,IGR,IGR,1,IC)
+ ETA(IGR)=VOL1(IBM,IC)*SQRT(SIGR/DIFF)
+ DO JGR=1,NG
+ IF(JGR.EQ.IGR) THEN
+ SIGT=SIGR-CHI1(IBM,IGR,IC)*SIGF1(IBM,IGR,IC)/ZKEFF(IC)
+ CALL BRESS1(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT,
+ 1 AA11)
+ ELSE
+ SIGT=-SCAT1(IBM,JGR,IGR,1,IC)-CHI1(IBM,JGR,IC)*
+ 1 SIGF1(IBM,IGR,IC)/ZKEFF(IC)
+ CALL BRESS2(ITRIAL(IGR),VOL1(IBM,IC),DIFF,SIGR,SIGT,
+ 1 AA11)
+ ENDIF
+ DO K1=1,4
+ DO K2=1,4
+ AB((JGR-1)*4+K1,(IGR-1)*4+K2)=AA11(K1,K2)
+ ENDDO
+ ENDDO
+ ENDDO
+ SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/)
+ DO K1=1,4
+ AB((IGR-1)*4+K1,4*NG+1)=SX(K1+1)
+ ENDDO
+ ENDDO
+ CALL ALSB(4*NG,1,AB,IER,4*NG)
+ IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(1).')
+ DO IGR=1,NG
+ ALPHA(1,IGR)=FLX1(IBM,IGR,IC)
+ DO I=1,4
+ ALPHA(I+1,IGR)=AB((IGR-1)*4+I,4*NG+1)
+ ENDDO
+ ENDDO
+ DEALLOCATE(AB)
+ ELSE
+* use averaged cross section values for the reflector
+ ALLOCATE(AB(5*NG,5*NG+1))
+ DO IGR=1,NG
+ DIFF=DC(IBM,IGR)
+ SIGR=TOT(IBM,IGR)+B2(IC)*DIFF-SCAT(IBM,IGR,IGR)
+ ETA(IGR)=VOL(IBM)*SQRT(SIGR/DIFF)
+ DO JGR=1,NG
+ IF(JGR.EQ.IGR) THEN
+ SIGT=SIGR
+ CALL BRESS3(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11)
+ ELSE
+ SIGT=-SCAT(IBM,JGR,IGR)
+ CALL BRESS4(ITRIAL(IGR),VOL(IBM),DIFF,SIGR,SIGT,A11)
+ ENDIF
+ DO K1=1,5
+ DO K2=1,5
+ AB((JGR-1)*5+K1,(IGR-1)*5+K2)=A11(K1,K2)
+ ENDDO
+ ENDDO
+ ENDDO
+ SX = (/0.0,0.0,0.0,JXM(IBM,IGR,IC),JXP(IBM,IGR,IC)/)
+ DO K1=1,5
+ AB((IGR-1)*5+K1,5*NG+1)=SX(K1)
+ ENDDO
+ ENDDO
+ CALL ALSB(5*NG,1,AB,IER,5*NG)
+ IF (IER.NE.0) CALL XABORT('BREERM: ALBS FAILURE(2).')
+ DO IGR=1,NG
+ DO I=1,5
+ ALPHA(I,IGR)=AB((IGR-1)*5+I,5*NG+1)
+ ENDDO
+ ENDDO
+ DEALLOCATE(AB)
+ ENDIF
+ IF(IPRINT.GT.1) THEN
+ WRITE(6,'(/9H MIXTURE=,I5,6H CASE=,I3)') J,IC
+ WRITE(6,20) 'ALPHA',ALPHA(:5,:NG)
+ ENDIF
+*----
+* COMPUTE NODAL SURFACE FLUXES
+*----
+ DO IGR=1,NG
+ IF (ITRIAL(IGR) == 1) THEN
+ Q(1) = ALPHA(3,IGR)/2.
+ FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1)
+ FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(1)
+ ELSE
+ Q(1) = ETA(IGR)/2.
+ Q(2) = SINH(Q(1))
+ Q(3) = ALPHA(3,IGR)/2.
+ Q(4) = ALPHA(4,IGR)*Q(2)
+ Q(5) = ALPHA(5,IGR)*(COSH(Q(1)) - (2*Q(2))/ETA(IGR))
+ FHOMM(IC,IGR,IBM)=-ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)-Q(4)+
+ 1 Q(5)
+ FHOMP(IC,IGR,IBM)=ALPHA(2,IGR)/2.+ALPHA(1,IGR)+Q(3)+Q(4)+
+ 1 Q(5)
+ ENDIF
+ ENDDO
+ ENDDO
+ IF(IPRINT.GT.0) THEN
+ WRITE(6,'(/39H BREERM: NODAL SURFACE FLUXES FOR CASE=,I5)') IC
+ DO IBM=1,NMIX1
+ WRITE(6,'(/9H MIXTURE=,I5)') IBM
+ WRITE(6,20) 'FHOMM',FHOMM(IC,:NG,IBM)
+ WRITE(6,20) 'FHOMP',FHOMP(IC,:NG,IBM)
+ ENDDO
+ ENDIF
+*----
+* END OF LOOP OVER CASES
+*----
+ ENDDO
+*----
+* COMPUTE DISCONTINUITY AND ALBEDO FACTORS
+*----
+ AFACTOR(:,:)=0.0
+ DO IBM=1,NMIX1
+ IF(NC.EQ.1) THEN
+ ! DF-NEM approach
+ FDXM(IBM,:,:)=0.0
+ FDXP(IBM,:,:)=0.0
+ DO IGR=1,NG
+ FDXM(IBM,IGR,IGR)=FHETXM(IBM,IGR,1,1)/REAL(FHOMM(1,IGR,IBM))
+ FDXP(IBM,IGR,IGR)=FHETXP(IBM,IGR,1,1)/REAL(FHOMP(1,IGR,IBM))
+ ENDDO
+ IF(IBM.EQ.NMIX1) THEN
+ DO IGR=1,NG
+ AFACTOR(IGR,IGR)=JXP(IBM,IGR,1)/REAL(FHOMP(1,IGR,IBM))
+ ENDDO
+ ENDIF
+ ELSE IF(NC.LT.NG) THEN
+ CALL XABORT('BREERM: DEGENERATE SYSTEM')
+ ELSE IF(NC.EQ.NG) THEN
+ ! ERM-NEM approach: linear system resolution
+ ALLOCATE(WORK2(NC,2*NG))
+ DO IGR=1,NG
+ DO IC=1,NC
+ WORK2(IC,IGR)=FHOMM(IC,IGR,IBM)
+ WORK2(IC,NG+IGR)=FHETXM(IBM,IGR,1,IC)
+ ENDDO
+ ENDDO
+ CALL ALSBD(NC,NG,WORK2,IER,NC)
+ IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(1).')
+ DO IGR=1,NG
+ DO IC=1,NC
+ FDXM(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR))
+ ENDDO
+ ENDDO
+ DO IGR=1,NG
+ DO IC=1,NC
+ WORK2(IC,IGR)=FHOMP(IC,IGR,IBM)
+ WORK2(IC,NG+IGR)=FHETXP(IBM,IGR,1,IC)
+ ENDDO
+ ENDDO
+ CALL ALSBD(NC,NG,WORK2,IER,NC)
+ IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(2).')
+ DO IGR=1,NG
+ DO IC=1,NC
+ FDXP(IBM,IGR,IC)=REAL(WORK2(IC,NG+IGR))
+ ENDDO
+ ENDDO
+ IF(IBM.EQ.NMIX1) THEN
+ DO IGR=1,NG
+ DO IC=1,NC
+ WORK2(IC,IGR)=FHOMP(IC,IGR,IBM)
+ WORK2(IC,NG+IGR)=JXP(IBM,IGR,IC)
+ ENDDO
+ ENDDO
+ CALL ALSBD(NC,NG,WORK2,IER,NC)
+ IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).')
+ DO IGR=1,NG
+ DO JGR=1,NG
+ AFACTOR(IGR,JGR)=REAL(WORK2(JGR,NG+IGR))
+ ENDDO
+ ENDDO
+ ENDIF
+ DEALLOCATE(WORK2)
+ ELSE IF(NC.GE.NG) THEN
+ ! ERM-NEM approach: pseudo inversion
+ ALLOCATE(TAU(NG),B(NC),X(NG))
+ CALL ALST2F(NC,NC,NG,FHOMM(1,1,IBM),TAU)
+ DO IGR=1,NG
+ B(:)=FHETXM(IBM,IGR,1,:)
+ CALL ALST2S(NC,NC,NG,FHOMM(1,1,IBM),TAU,B,X)
+ FDXM(IBM,IGR,:)=REAL(X(:))
+ ENDDO
+ CALL ALST2F(NC,NC,NG,FHOMP(1,1,IBM),TAU)
+ DO IGR=1,NG
+ B(:)=FHETXP(IBM,IGR,1,:)
+ CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X)
+ FDXP(IBM,IGR,:)=REAL(X(:))
+ ENDDO
+ IF(IBM.EQ.NMIX1) THEN
+ DO IGR=1,NG
+ B(:)=JXP(IBM,IGR,:)
+ CALL ALST2S(NC,NC,NG,FHOMP(1,1,IBM),TAU,B,X)
+ AFACTOR(IGR,:)=REAL(X(:))
+ ENDDO
+ ENDIF
+ DEALLOCATE(X,B,TAU)
+ ENDIF
+ ENDDO
+ IF(IPRINT.GT.0) THEN
+ WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS BEFORE NORMALIZAT,
+ 1 3HION)')
+ DO IBM=1,NMIX1
+ WRITE(6,'(/9H MIXTURE=,I5)') IBM
+ WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG)
+ WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG)
+ ENDDO
+ WRITE(6,'(/31H BREERM: DIFFUSION COEFFICIENTS)')
+ DO IBM=1,NMIX1
+ WRITE(6,'(/9H MIXTURE=,I5)') IBM
+ WRITE(6,20) 'DIFF',DC(IBM,:NG)
+ ENDDO
+ ENDIF
+*----
+* COMPUTE ALBEDOS
+*----
+ IF(ICODE(2).NE.0) THEN
+ BETA(:,:)=0.0
+ DO IGR=1,NG
+ DO JGR=1,NG
+ BETA(IGR,JGR)=(1.0-2.0*AFACTOR(IGR,JGR))/(1.0+2.0*
+ 1 AFACTOR(IGR,JGR))
+ ENDDO
+ ENDDO
+ IF(IPRINT.GT.0) THEN
+ WRITE(6,'(/16H BREERM: ALBEDOS)')
+ WRITE(6,20) 'BETA',BETA(:NG,:NG)
+ ENDIF
+ ENDIF
+*----
+* NGET NORMALIZATION OF THE DISCONTINUITY FACTORS
+*----
+ ALLOCATE(WORK2(NG,2*NG))
+ DO J=1,LX1-1
+ IBM=IMIX(J)
+ IBMP=IMIX(J+1)
+ IF((IBM.EQ.0).OR.(IBMP.EQ.0)) CYCLE
+ DO IGR=1,NG
+ DO JGR=1,NG
+ WORK2(IGR,JGR)=FDXP(IBM,IGR,JGR)
+ WORK2(IGR,NG+JGR)=FDXM(IBMP,IGR,JGR)
+ ENDDO
+ ENDDO
+ CALL ALSBD(NG,NG,WORK2,IER,NG)
+ IF(IER.NE.0) CALL XABORT('BREERM: SINGULAR MATRIX(3).')
+ DO IGR=1,NG
+ ! impose the adf on the fuel assembly side
+ IF((J.EQ.J_FUEL).AND.(NGET.EQ.1)) THEN
+ FNORM=ADFREF(IGR)
+ ELSE IF((J.EQ.J_FUEL).AND.(NGET.EQ.2)) THEN
+ FNORM=ADF(IBM,IGR)
+ ELSE
+ FNORM=FDXP(IBM,IGR,IGR)
+ ENDIF
+ FDXP(IBM,IGR,:)=0.0
+ FDXP(IBM,IGR,IGR)=FNORM
+ DO JGR=1,NG
+ FDXM(IBMP,IGR,JGR)=REAL(WORK2(IGR,NG+JGR))*FNORM
+ ENDDO
+ ENDDO
+ ENDDO
+ DEALLOCATE(WORK2)
+ IF(J_FUEL.GT.0) THEN
+ DO J=J_FUEL,1,-1
+ IBM=IMIX(J)
+ IF(IBM.EQ.0) CYCLE
+ DO IGR=1,NG
+ FNORM=FDXP(IBM,IGR,IGR)/FDXM(IBM,IGR,IGR)
+ DO JGR=1,NG
+ IF(J>1) THEN
+ IBMM=IMIX(J-1)
+ IF(IBMM.GT.0) FDXP(IBMM,IGR,JGR)=FDXP(IBMM,IGR,JGR)*FNORM
+ ENDIF
+ FDXM(IBM,IGR,JGR)=FDXM(IBM,IGR,JGR)*FNORM
+ ENDDO
+ ENDDO
+ ENDDO
+ ENDIF
+ DO J=J_FUEL+1,LX1
+ IBM=IMIX(J)
+ IF(IBM.EQ.0) CYCLE
+ DO IGR=1,NG
+ FNORM=FDXM(IBM,IGR,IGR)/FDXP(IBM,IGR,IGR)
+ DO JGR=1,NG
+ IF(J<LX1) THEN
+ IBMP=IMIX(J+1)
+ IF(IBMP.GT.0) FDXM(IBMP,IGR,JGR)=FDXM(IBMP,IGR,JGR)*FNORM
+ ENDIF
+ FDXP(IBM,IGR,JGR)=FDXP(IBM,IGR,JGR)*FNORM
+ ENDDO
+ ENDDO
+ ENDDO
+ IF(IPRINT.GT.0) THEN
+ WRITE(6,'(/48H BREERM: DISCONTINUITY FACTORS AFTER NGET NORMAL,
+ 1 7HIZATION)')
+ DO IBM=1,NMIX1
+ WRITE(6,'(/9H MIXTURE=,I5)') IBM
+ WRITE(6,20) 'FDXM',FDXM(IBM,:NG,:NG)
+ WRITE(6,20) 'FDXP',FDXP(IBM,:NG,:NG)
+ ENDDO
+ ENDIF
+*----
+* SAVE THE OUTPUT NODAL MACROLIB
+*----
+ ALLOCATE(IJJ(NMIX1),NJJ(NMIX1),IPOS(NMIX1),WORK(NMIX1*NG))
+ ISTATE(:)=0
+ ISTATE(1)=NG
+ ISTATE(2)=NMIX1
+ ISTATE(3)=1
+ IF(J_FUEL.GT.0) ISTATE(4)=1
+ IF(ICODE(2).NE.0) ISTATE(8)=1 ! physical matrix albedo info
+ ISTATE(9)=1 ! diffusion coefficient information
+ IF(ISPH.EQ.0) ISTATE(12)=4 ! discontinuity factor information
+ CALL LCMPUT(IPMAC1,'STATE-VECTOR',NSTATE,1,ISTATE)
+ CALL LCMPUT(IPMAC1,'ENERGY',NG+1,2,ENER)
+ CALL LCMPUT(IPMAC1,'VOLUME',NMIX1,2,VOL)
+ CALL LCMPUT(IPMAC1,'B2 B1HOM',1,2,B2)
+ IF(ICODE(2).NE.0) CALL LCMPUT(IPMAC1,'ALBEDO',NG*NG,2,BETA)
+ IF(ISPH.EQ.0) THEN
+ CALL LCMSIX(IPMAC1,'ADF',1)
+ NTYPE=2
+ HADF(1)='ERM_M'
+ HADF(2)='ERM_P'
+ CALL LCMPUT(IPMAC1,'NTYPE',1,1,NTYPE)
+ CALL LCMPTC(IPMAC1,'HADF',8,NTYPE,HADF)
+ CALL LCMPUT(IPMAC1,HADF(1),NMIX1*NG*NG,2,FDXM)
+ CALL LCMPUT(IPMAC1,HADF(2),NMIX1*NG*NG,2,FDXP)
+ CALL LCMSIX(IPMAC1,' ',2)
+ ENDIF
+ JPMAC1=LCMLID(IPMAC1,'GROUP',NG)
+ DO IGR=1,NG
+ KPMAC1=LCMDIL(JPMAC1,IGR)
+ DO IBM=1,NMIX1
+ WORK(IBM)=VOL(IBM)*FLX(IBM,IGR)
+ ENDDO
+ CALL LCMPUT(KPMAC1,'FLUX-INTG',NMIX1,2,WORK)
+ CALL LCMPUT(KPMAC1,'NTOT0',NMIX1,2,TOT(:,IGR))
+ CALL LCMPUT(KPMAC1,'DIFF',NMIX1,2,DC(:,IGR))
+ DO IBM=1,NMIX1
+ WORK(IBM)=SCAT(IBM,IGR,IGR)
+ ENDDO
+ CALL LCMPUT(KPMAC1,'SIGW00',NMIX1,2,WORK)
+ CALL LCMPUT(KPMAC1,'CHI',NMIX1,2,CHI(:,IGR))
+ CALL LCMPUT(KPMAC1,'NUSIGF',NMIX1,2,SIGF(:,IGR))
+ IPOSDE=0
+ DO IBM=1,NMIX1
+ J2=IGR
+ J1=IGR
+ DO JGR=1,NG
+ IF(SCAT(IBM,IGR,JGR).NE.0.0) THEN
+ J2=MAX(J2,JGR)
+ J1=MIN(J1,JGR)
+ ENDIF
+ ENDDO
+ NJJ(IBM)=J2-J1+1
+ IJJ(IBM)=J2
+ IPOS(IBM)=IPOSDE+1
+ DO JGR=J2,J1,-1
+ IPOSDE=IPOSDE+1
+ IF(IPOSDE.GT.NG*NMIX1) CALL XABORT('BREERM: SCAT OVERFLOW.')
+ WORK(IPOSDE)=SCAT(IBM,IGR,JGR)
+ ENDDO
+ ENDDO
+ CALL LCMPUT(KPMAC1,'SCAT00',IPOSDE,2,WORK)
+ CALL LCMPUT(KPMAC1,'NJJS00',NMIX1,1,NJJ)
+ CALL LCMPUT(KPMAC1,'IJJS00',NMIX1,1,IJJ)
+ CALL LCMPUT(KPMAC1,'IPOS00',NMIX1,1,IPOS)
+ ENDDO
+*----
+* SCRATCH STORAGE DEALLOCATION
+*----
+ DEALLOCATE(WORK,IPOS,NJJ,IJJ,ADF,SCAT,SIGF,CHI,TOT,DC,FLX,VOL)
+ DEALLOCATE(FHOMP,FHOMM,BETA,AFACTOR,FDXP,FDXM,ALPHA,ETA)
+ RETURN
+ 20 FORMAT(1X,A9,1P,10E12.4,/(10X,10E12.4))
+ END